Create an account and get 3 free clips per day.
Chapters
Histology of In-stent Stenosis
Histology of In-stent Stenosis
angioplastiedangioplastyAnti-platelet therapyanticoagulationascendingbiopsyBoston ScientificcalcificationcontrastdiffuseDiffuse severe in-stent stenosisEndoprosthesisextendingfemoralfollowupfreshhistologyiliacintimalmaximalnitinolocclusionorganizingoutflowoverlappingpoplitealPost- thrombotic SyndromePTArecanalizationreliningRelining with WallstentsstenosisstentstentingstentssuperficialTherapeutic / DiagnosticthickeningthrombolysisthrombustimelineVeithvenogramwallstentwallstents
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Aorto-Renal BypassAspiration SystemGore Viabahn VBX (Gore Medical)PenumbraPenumbra’s Indigotherapeutic
New Devices For False Lumen Obliteration With TBADs: Indications And Results
New Devices For False Lumen Obliteration With TBADs: Indications And Results
aneurysmangiographyaortaballooningCcentimeterdilatorendograftendovascularEndovascular DevicefenestratedgraftiliacimplantedlumenoccludeoccluderoccludersoccludesremodelingstentStent graftstentstechniqueTEVARtherapeuticthoracicthoracoabdominalVeithy-plugyplug
Advantages Of Cook Zenith Spiral Z Limbs For EVARs Landing In The External Iliac Artery
Advantages Of Cook Zenith Spiral Z Limbs For EVARs Landing In The External Iliac Artery
aneurysmarterybuttockclaudicationCook ZenithdeployedendograftendoleaksevarevarsexcellentfinalgrafthelicalhypogastriciliacjapaneselandinglimbobservationalocclusionoperativepatencypatientspercentrenalrequiredspiralSpiral Z graftstenosisstentStent graftstentsstudytripleVeithzenith
Surgical Creation Of A Moncusp Valve
Surgical Creation Of A Moncusp Valve
applycompetingcontralateraldeependovascularfibroticflapflowhemodynamicmalfunctioningmobilemodelingMono-cuspid neovalveMono-cuspid Stent PrototypeparietalreconstructionrefluxstentthrombosisvalveValvuloplastyveinvenouswall
Tips And Tricks For Thrombo-Embolectomy For Clot Removal From All Arteries Using The Indigo System: How To Measure Success
Tips And Tricks For Thrombo-Embolectomy For Clot Removal From All Arteries Using The Indigo System: How To Measure Success
Aspiration SystemAspiration ThrombectomyCovered stentInjured infa-renal aorta with embolegenic thrombusPenumbraPenumbra’s Indigotherapeutic
Does The ATTRACT Trial Result Change How You Manage Patients With Acute DVT
Does The ATTRACT Trial Result Change How You Manage Patients With Acute DVT
abstractacuteAnti-coagulantsanticoagulationattractclotclotsdistalDVTendovascularendovascular Clot RemovalextremityfemoralinterventionpatientspharmaphlegmasiaproximalrandomizedsymptomssyndromeulcerationsveinVeithvenous
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
aneurysmaorticcentimeterdeviceendoleaksevarlearlowoutcomespatientpatientspredictorsregulatoryriskshrinkagestentsuprarenalSurveillanceVeith
Subgroup Analyses Of The ATTRACT Trial
Subgroup Analyses Of The ATTRACT Trial
anticoagulationclinicalcompareddeepdifferenceDVTedemaendpointfavoredfavoringiliofemoralincreasedintracranialmeaningfulmoderateoutcomepatientspcdtpercutaneousprimarypublishedqualityrandomizationreductionriskscoresevereseveritystratifiedsyndromethrombolysisvenousversusvillalta
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
adjunctsanatomicangioplastyarchballoonballoonsbrachiocephaliccephalicdeploymentfistulasfunctionalgoregraftgraftingInterventionspatencypredictorsprimaryradiocephalicrecurrentstenosesstenosisstentStent graftstentingsuperiorsurgicaltranspositionviabahn
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
brachialC-GuardcarotidCASCovered stentcumulativedemographicdeviceembolicembolic protection deviceenrolledexternalInspire MDminormyocardialneurologicneurologicalocclusionongoingpatientsproximalratestenosisstenttiastranscervicaltransfemoral
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
accessaccurateaorticarcharterycarotidcarotid arteryCarotid ChimneychallengingchimneyChimney graftcommoncommonlycoveragedeployeddeploymentdevicedissectionselectiveembolizationemergentlyendograftendoleakendovascularexpandableleftmaximummorbidityocclusionpatientsperformedpersistentpublicationsretrogradesealsheathstentssubclaviansupraclavicularTEVARtherapeuticthoracictype
Why Are Carotid Stenoses Under- And Over-Estimated By Duplex Ultrasonography: How To Prevent These Problems
Why Are Carotid Stenoses Under- And Over-Estimated By Duplex Ultrasonography: How To Prevent These Problems
arteriovenousbasicallybrachiocephaliccarotidcommoncontralateraldiameterdiscordancedistalexternalFistulainternallowoccludedocclusionproximalrecanalizedrokestenosistighttumorvelocitiesvelocityvessel
Current Optimal Treatment For Vertebral Artery Disease: Indications And When Is Open Surgery The Best Option
Current Optimal Treatment For Vertebral Artery Disease: Indications And When Is Open Surgery The Best Option
arteryatheroscleroticbasilarclinicaldifficultECVAendovascularextracranialhemisphericincisionoutcomespatencyPathophysiologyrevascularizationtransversetypicallyvascularVeithvertebralvertebral artery
Long-Term Results Of AV Fistulas And Grafts
Long-Term Results Of AV Fistulas And Grafts
AF GraftarterAVFDialysisduplexendovascularFistulafistulasfistulogramgraftgraftshemodialysisinfectionmaturationoccludedocclusionpatencypatientspreoperativeprimaryprominentproximalpseudoaneurysmpseudoaneurysmsreinterventionscanningtrendunderwentveinVeithvenousversus
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
abdominalangiogramarterialatrialbowelcolectomycoloniccomplicationsdiseasedyslipidemiaetiologyextremityfibrinolyticheparinincidenceincreaseinflammatoryinpatientinpatientsischemicIV HeparinmedicalocclusionoccurringpatientsprophylaxispulmonaryresectionrevascularizationriskRt PE / Rt Pulm Vein thrombosis / Lt Atrial thrombosissidedSMA thrombectomysubtotalsystemicthrombectomythrombosisthrombotictransverseulcerativeunderwentveinvenousvisceral
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
aneurysmcookdeviceselevatedendograftfenestratedfenestrationsFEVARgraftI-CAST(ZFEN)intensifiermidtermmortalityorthogonalpatientsrenalselectivestenosisstentstentedstentingtherapeutictreatedVBX (ZFEN)VeithvelocitiesvisceralwideZenith Fenestrated graft
Use Of Indirect Access Sites For AV Intervention
Use Of Indirect Access Sites For AV Intervention
accessapproacharterialcathetercephalicconvertdiagnosticdirectexposurefemoralferralFistulafistulasimmaturejugularoutflowPartially occluded immature lt upper arm AVFperformedpunctureradiationreportedretrospectiverupturedsnareStaged Trans-jugular approachstenosisstudyTrans-jugular approachtransjugularveinvenous
New Techniques In Endovascular Aspiration Thrombectomy: The World Has Changed For Treatment And Rescue Clot Extraction With Penumbra Indigo Suction Devices In Various Vascular Beds
New Techniques In Endovascular Aspiration Thrombectomy: The World Has Changed For Treatment And Rescue Clot Extraction With Penumbra Indigo Suction Devices In Various Vascular Beds
Acute Bowel IschemiaAspiration SystemAspiration ThrombectomyOscor Directional Sheath (Oscor) / AngioJet (Boston Scientific) - Thrombectomy SystemPenumbraPenumbra’s IndigoTherapeutic / Diagnostic
Why Indications For Invasive Treatment Of Carotid Stenosis Is Much Less In Women Than Men
Why Indications For Invasive Treatment Of Carotid Stenosis Is Much Less In Women Than Men
agedasymptomaticbenefitcarotidCASCEAcerebralcompareddeathendarterectomyharmischemicmedicalnascetocclusionperformedproceduralpublishedrandomizedstatisticallystenosisstentingstrokesymptomatictrialsunderpoweredversusweekswomen
Italian National Registry Results With Inner Branch Devices For Aortic Arch Disease
Italian National Registry Results With Inner Branch Devices For Aortic Arch Disease
aortaaorticarcharteriesarteryascendingavailabilitybarbsbranchcarotidcatheterizedcommondecreasedevicesdissectiondoublr branch stent graftendoleakendovascularevarexcludinggraftguptalimbmajormidtermmorphologicalmortalityoperativepatientpatientsperioperativeproximalregistryrepairretrogradestentStent graftstentingstrokesupraterumotherapeutictibialvascular
Status Of Aortic Endografts For Occlusive Disease: Indications, Precautions, Technical Tips And Value
Status Of Aortic Endografts For Occlusive Disease: Indications, Precautions, Technical Tips And Value
abisaccessacuteAFX ProthesisantegradeanterioraortaaorticaortoiliacarteriogramarteryaxillaryballoonbrachialcalcifiedcannulationcircumferentialcutdowndilatordiseasedistallyendarterectomyEndo-graftendograftendograftsEndologixexcluderExcluder Prothesis (W.L.Gore)expandableextremityfemoralfemoral arterygraftiliacintimallesionslimboccludeoccludedocclusionocclusiveOpen StentoperativeoptimizedoutflowpatencypatientspercutaneouspercutaneouslyplacementpredilationproximalrequireriskRt CFA primary repair / Lt CFA Mynx Closure devicesheathstentstentssymptomstasctechnicaltherapeuticvessels
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
analysisaneurysmangulationaorticdiameterendograftendoleakendoleaksendovascularevariliaclengthlimbmaximalneckpatientspredictpredictivepredictspreoperativeproximalreinterventionsscanssecondaryshrinkagestenosisstenttherapeuticthrombus
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
anastomosisangiogrambailbypasscarotidCarotid bypassCEACFAdurableembolicendarterectomygoregrafthybridHybrid vascular graftinsertedlesionnitinolpatencypatientperioperativeproximalPTAptferestenosisstenosistechniquetransmuralvascular graft
How To Treat Labial Varices: Sclerotherapy, USG Sclerotherapy And Or Phlebectomy
How To Treat Labial Varices: Sclerotherapy, USG Sclerotherapy And Or Phlebectomy
anesthesiaanteriorcomplaintsdyspareuniahemorrhageiliacincisionincludelabialLabial Varices + Leg VVligationLocal SclerotherapymalformationpatientpelvicperforatorsperformedphlebectomypolidocanolposteriorpostpartumrefluxrefluxingsaphenofemoralsclerosclerotherapysulfatesuperficialsymptomaticsymptomstetradecylultrasoundvaricositiesveinsVeithvenogramvenousversusvulvar
New Developments In The Management Of Blunt Aortic Injuries Using A Practical Grading System: Why It Matters
New Developments In The Management Of Blunt Aortic Injuries Using A Practical Grading System: Why It Matters
aorticcontourdripevarflapfollowuphemorrhagesheparinhoursinjuryintimalintracranialminimalmoderatepatientpatientspercentperformedpseudoaneurysmremodelingrestartedrevascularizescanseveresubclavianTEVARthrombusworsening
Non-Invasive 24/7 Flow Augmentation In Deep Venous Pathology
Non-Invasive 24/7 Flow Augmentation In Deep Venous Pathology
analyzedbloodcalfcompressiondecreasedevicedevicesfemoralflowhealthyimprovesincreaseincreasedintermittentneurostimulationpatientspilotpneumaticstentstentingstimulatestimulationstudiesveinvelocityvenousvolume
With Complex AAAs, How To Make Decisions Re Fenestrations vs. Branches: Which Bridging Branch Endografts Are Best
With Complex AAAs, How To Make Decisions Re Fenestrations vs. Branches: Which Bridging Branch Endografts Are Best
anatomicanatomyaneurysmaneurysmsaorticarteriesballoonBARDBEVARbranchbranchedbranchesceliaccenterscombinationCoveracovereddeviceendovascularexpandableextremityfenestratedFenestrated EndograftfenestrationfenestrationsFEVARincidencemayoocclusionocclusionsphenotypeproximalproximallyrenalrenal arteriesrenalsreproduciblestentstentstechnicaltherapeutictortuositytypeversusViabah (Gore) / VBX (Gore) / Bentely (Bentely)visceral
Going Rogue: Off The Grid Venous Malformation Sclerotherapeutic Techniques
Going Rogue: Off The Grid Venous Malformation Sclerotherapeutic Techniques
coil embolizationPersisting Venous MalformationsclerotherapyTherapeutic / Diagnostic
Thermal Ablation In Anticoagulated Patients: Is It Safe And Effective
Thermal Ablation In Anticoagulated Patients: Is It Safe And Effective
ablationanticoagulatedanticoagulationantiplateletatrialClosureFastcontralateralcontrolCovidein Cf 7-7-60 2nd generationdatademonstratedduplexdurabilitydurableDVTdvtseffectivenessendothermalendovenousevlafiberlargestlaserMedtronicmodalitiesocclusionpatientspersistentpoplitealproceduresRadiofrequency deviceRe-canalizationrecanalizationrefluxstatisticallystudysystemictherapythermaltreatedtreatmenttumescentundergoingveinvenousvesselswarfarin
Transcript

- Thanks Bill and I thank Dr. Veith and the organizers of the session for the invitation to speak on histology of in-stent stenosis. These are my disclosures. Question, why bother with biopsy? It's kind of a hassle. What I want to do is present at first

before I show some of our classification of this in data, is start with this case where the biopsy becomes relevant in managing the patient. This is a 41 year old woman who was referred to us after symptom recurrence two months following left iliac vein stenting for post-thrombotic syndrome.

We performed a venogram and you can see this overlapping nitinol stents extending from the..., close to the Iliocaval Confluence down into Common Femoral and perhaps Deep Femoral vein. You can see on the venogram, that it is large displacement of the contrast column

from the edge of the stent on both sides. So we would call this sort of diffuse severe in-stent stenosis. We biopsy this material, you can see it's quite cellular. And in the classification, Doctor Gordon, our pathologist, applies to all these.

Consisted of fresh thrombus, about 15% of the sample, organizing thrombus about zero percent, old thrombus, which is basically a cellular fibrin, zero percent and diffuse intimal thickening - 85%. And you can see there is some evidence of a vascularisation here, as well as some hemosiderin deposit,

which, sort of, implies a red blood cell thrombus, histology or ancestry of this tissue. So, because the biopsy was grossly and histolo..., primarily grossly, we didn't have the histology to time, we judged that thrombolysis had little to offer this patient The stents were angioplastied

and re-lined with Wallstents this time. So, this is the AP view, showing two layers of stents. You can see the original nitinol stent on the outside, and a Wallstent extending from here. Followed venogram, venogram at the end of the procedure, shows that this displacement, and this is the maximal

amount we could inflate the Wallstent, following placement through this in-stent stenosis. And this is, you know, would be nice to have a biological or drug solution for this kind of in-stent stenosis. We brought her back about four months later, usually I bring them back at six months,

but because of the in-stent stenosis and suspecting something going on, we brought her back four months later, and here you can see that the gap between the nitinol stent and the outside the wall stent here. Now, in the contrast column, you can see that again, the contrast column is displaced

from the edge of the Wallstent, so we have recurrent in-stent stenosis here. The gross appearance of this clot was red, red-black, which suggests recent thrombus despite anticoagulation and the platelet. And, sure enough, the biopsy of fresh thrombus was 20%,

organizing thrombus-75%. Again, the old thrombus, zero percent, and, this time, diffuse intimal thickening of five percent. This closeup of some of that showing the cells, sort of invading this thrombus and starting organization. So, medical compliance and outflow in this patient into IVC

seemed acceptable, so we proceeded to doing ascending venogram to see what the outflow is like and to see, if she was an atomic candidate for recanalization. You can see these post-thrombotic changes in the popliteal vein, occlusion of the femoral vein.

You can see great stuffiness approaching these overlapping stents, but then you can see that the superficial system has been sequestered from the deep system, and now the superficial system is draining across midline. So, we planned to bring her back for recanalization.

So biopsy one with diffuse intimal thickening was used to forego thrombolysis and proceed with PTA and lining. Biopsy two was used to justify the ascending venogram. We find biopsy as a useful tool, making practical decisions. And Doctor Gordon at our place has been classifying these

biopsies in therms of: Fresh Thrombus, Organizing Thrombus, Old Thrombus and Diffuse Intimal thickening. These are panels on the side showing the samples of each of these classifications and timelines. Here is a timeline of ...

Organizing Thrombus here. To see it's pretty uniform series of followup period For Diffuse Intimal thickening, beginning shortly after the procedure, You won't see very much at all, increases with time. So, Fresh Thrombus appears to be

most prevalent in early days. Organizing Thrombus can be seen at early time points sample, as well as throughout the in-stent stenosis. Old Thrombus, which is a sort of a mystery to me why one pathway would be Old Thrombus and the other Diffuse Intimal thickening.

We have to work that out, I hope. Calcification is generally a very late feature in this process. Thank you very much.

- [Audience Member 1] So I have a question for Dr. Jackson, but maybe everybody else on the panel can chip in, and it just has to do with what your first intervention is going to be for a focal stenosis in a vein graft, and I guess, Ben, my question is, in general, is your first time you intervene going to be a drug-eluding stent?

Our strategy generally has been, to start with, a cutting balloon based on a series, I think it was from Schneider, who compared it and saw pretty good results. Nowadays, I think maybe I'd do that, and at the same time then put a drug-coated balloon in, and that's

increasing the cost, there's no good data to say that's better than just a cutting balloon, but I think I might do that and reserve the drug-eluding stent for the second time or third time. So my question is, what's your intervention the first time you intervene endovascularly

for a focal vein graft stenosis? - [Dr. Benjamin Jackson] So if you're not going to do an open revision, right, we'll preface with that, I'll use a coronary drug-eluding stent first. - [Audience Member 1] Okay. - [Speaker 1] Okay, so, are you happy with that?

- [Audience Member 1] Well, I was hoping to get other opinions, but if you want to move on, that's fine. - [Speaker 1] Alright, so I'll give you my opinion. I don't think there's anything wrong with putting a stent. The idea that the stent is going to be occupying space and is going to mess up your next procedure, I think

that's more out of fear than actually the reality. We have patients that in the SFA popliteal segmentary, we're on the fifth round of stents, and you'd be surprised how you can distend the fifth stent inside the SFA. I never thought it was possible, actually.

We have some IBIS documentation showing at least a five millimeter lumen after you do that thing. So I'm not so concerned about that. The problem with this, and I agree with putting a stent because there's a very rigid lesion sometimes. It's not easy to balloon them, it's not easy to

because usually the cutting balloon probably already got the lumen that you want, but then definitely it increases the cost that way. Again, who knows the other answer. Anybody else? - [Dr. Chris Metzger] Yeah, a brief comment.

I don't think all vein graft lesions are alike, so it depends if it's diffused or focal. The other thing is, I think your response to initial therapy is important, so if you do your balloon, cutting balloon, then it's going to tell you recoil, not recoil,

and the other thing I would say is intravascular ultrasound, if you're in doubt on how large that is, I think helps a lot. So, you know, if it's very focal, very high grade, I think drug-eluding stent is perfect, the question is what size, IBIS helps with that.

Otherwise, I think your strategy for longer disease might be a reasonable strategy as well. - [Dr. George Adams] And the only other comment I'd make is if there is a thrombotic component like Chris was saying, depending on the client morphology I might use laser atherectomy followed by a

biologic therapy such as a drug-coated balloon. - [Speaker 1] Yes, sir? - [Audience Member 2] About that last presentation, are you using any type of anticoagulation when you do these PTFE tibial bypasses, or were the groups comparable where there's only antiplatelet

therapy in the vein grafts and in the prosthetic grafts, or are you putting all of them on factor 10A inhibitor coumadin? - [Dr. Peter Lin] So our patient, we typically put them on aspirin, and for the Propaten we don't add any distal antiplatelet agents.

- [Audience Member 2] Because that's a lot better than historical reports, probably. I wondered, why do you think it shows so much better, even with previous vein cusp patches? - [Dr. Peter Lin] So I think the patch matters, and I also think that over the years, we also learned

a whole lot about the distal anastomotic patch, because time won't let me tell you something and go into great detail. So the patch, you know, we make, is about two to two and a half centimeter long, so that length of the patch is almost twice the length of

the diameter of the graft itself, so I think that's also a significant factor. So it's something that previous literature has not really emphasized on, and the PTFE ideally should be connected to the proximal one-third, instead of distal one-third, so that also may make

some of the same area boost configuration. So the whole idea is you want to make the patch as long distally as possible. So some of the variations, I think, have in part helped, and ideally is that the vein is available, that would be great, if not we also have used a lot

of bovine patch as our patch material, so that thing I think made a lot of difference. So I don't think, all things considered, antiplatelet agents played a huge role, but I think the distal anastomotic compliance mismatch, if we can alleviate that, it will help your outcome.

- [Speaker 1] So Peter, you believe that those grafts have a thrombotic threshold, or you think there's no thrombotic threshold for PTFE? - [Dr. Peter Lin] Oh, I think so. - [Speaker 1] Let me just continue my thought process. So if there is a thrombotic threshold, it doesn't matter

how long you're going to put the vein patch. You can put a 16 millimeter vein patch, it's not going to make any difference, if you reach that thrombotic threshold. So then we come to the criticism that maybe you're selecting the cases

with good runoff, and in the good runoff, it's hard to show a difference between vein and (unintelligible) bonded with the patch, maybe. But if you are to do those terrible cases that have an isolated TPO segment, or they're all the way on the foot or the plantar arteries, that maybe the

saphenous vein will come up much better than this. What do you think? - [Dr. Peter Lin] Well, these are all great points. It's hard to discern based on a single yes or no answer. Saphenous vein has certain limitations, although I believe there's still a standard of care

in terms of conduit choice. Often times the veins are sclerotic, we're limited by vein length, so again, I brought up some points that in some patients we can only connect it to a superficial femoral, even a popliteal bypass because the vein is not long enough.

So PTFE, while it's not perfect in some scenarios, it does have advantages, because I can connect it even to the external iliac artery, I can connect at the common femoral artery, so that's that benefit. I did mention very briefly in our multi-vein analysis, the single vessel runoff is the (unintelligible) runoff.

So in those cases, you're going to have bad outcome no matter what kind of conduit you use, I do believe that, but in general we'd just use aspirin for that patient. But I believe that if we do believe there's an underlying prothrombotic condition, we would add additional anticoagulants, but that's not typical routine practice.

- [Speaker 1] Alright, I just want to add that in poor runoff situations, the vein clearly does better, and it works for a long time. We had published three years ago, on plantar arteries in branches of tibial vessels in the foot, and they did work, only with vein.

Everything else kind of failed, even with the fistulas. Yes, sir? - [Audience Member 3] I have just a quick question about the Phoenix device, a two part question. A, do you use it with a filter, or can you use it with a filter, and two, do you use it as a standalone therapy

or adjunct to a drug-eluding balloon or anything else? - [Dr. George Adams] So, in general, atherectomy is always with adjunct balloon angioplasty. In regards to the filter, especially with the Phoenix device, you have to be careful and very selective with the wire that you use,

you want to use a nitinol wire. So for a filter usually I use a free-floating filter, the NAV-6, and you can't use it over that nitinol wire, you have to use a graduated tip wire, usually a Viper or a Viper Flex. So I would select cases where you would not use

a filter specifically with this device, so if you have a long lesion or if there's any thrombotic component to it, I'd be very conscientious of using this device with that. - [Speaker 1] Thank you. Any questions from the panel?

Because I have a few questions. - [Dr. George Adams] Actually, it was I think very stimulating as to the conversation we just had, in regards to thrombotic or anticoagulants with antiplatelets, you know. Recently the COMPASS trial just came out, as well

as an E-PAD which was more or less a pilot study, showing that just taking peripheral arterial disease regardless of grafts, there seems to be a thrombotic component, and factor 10A inhibitors may have benefit in addition to antiplatelet therapy in regards to all PAD patients.

I think it's a very interesting discussion. - [Speaker 1] I have a question, Dr. Dorigo. Once you identify the high risk group of patients, is there any strategy to modify them to improve them and get them to another category? - [Dr. Walter Dorigo] Most of the perimeters we

examined were not modifiable. Age, extension of disease, coronary artery disease. Maybe one possibility is to improve the runoff status but, in concomitance with the intervention, one can try to improve the runoff score. But four out of five factors were not modifiable.

- [Speaker 1] Thank you, okay. I have one more question. So, do you do distal bypasses? - [Speaker 2] We do distal bypasses, I personally don't. I have a big group, I have three people in my group that only do distal bypasses.

- [Speaker 1] So, it says a patient in your group does not have a saphenous vein, and has a limited runoff. How will you approach there? - [Speaker 2] Well, that was a question I would want to ask both Walter and Peter.

Is there a role for composite bypasses? Because we do it quite a lot where we only have shorter parts of vein available, shorter lengths of vein available, we would do the above-knee PTFE, and then cross the knee with the vein. But I remember that last year at this meeting,

the Americans said that it's worse results, but we still do it. - [Dr. Walter Dorigo] Yes, in the registry are a crude amount, so about one, 150 composite bypasses with the short or long segmental vein and the part of PTFE graft, we use it.

And the results are not particularly better than those with the grafts, but it's likely better. - [Speaker 1] Right, I want to ask the panel, if you have the use the common femoral artery as an in-flow, and this vessel has been used

a few times before, what do you prefer to use? The external iliac, redo the groin again, or use the deep femoral as an in-flow? We'll start with Peter Lin. - [Dr. Peter Lin] I would probably go to external iliac,

because higher, it's got proximal better vessels, and it's greater diameter, all things considered. If you go deep femoral, you still got to navigate across a stenotic plaque common femoral artery. - [Speaker 1] No, it's not stenotic, it's a normal vessel. - [Dr. Peter Lin] So, I would, if all had been equal,

obviously common femoral might be better, but if common femoral's highly disease, stented and treated, and so there's a lot of scar tissue, I'd probably go with external iliac. - [Speaker 1] Okay, anybody else want to make a comment on what they preferentially use for in-flow?

- [Speaker 2] It depends what material you're going to use. If we use the vein, we go back to the common femoral, if we use prosthetic material, we would prefer to have a site where it's easier to go in and lower the risk of infection. - [Speaker 1] Right. I'll say that it depends on

the length, if I have enough length just to go deep femoral, I'll go deep femoral preferentially, but I have gone to the external iliac with a vein and have had no problem with kinking or anything, it would just make a tunnel lateral to the artery. We don't go medially because there are too many

branches there, but laterally, and you can do the anastomosis vein, and it only adds about two, three centimeters of length when you get it just above the inguinal ligament. With that, I'm going to thank the speakers, it was a great conference, and call the next moderators, please.

- Thank you for introduction. Thanks to Frank Veith for the kind invitation to present here our really primarily single-center experience on this new technique. This is my disclosure. So what you really want

in the thromboembolic acute events is a quick flow restoration, avoid lytic therapies, and reduce the risk of bleeding. And this can be achieved by surgery. However, causal directed local thrombolysis

is much less invasive and also give us a panoramic view and topographic view that is very useful in these cases. But it takes time and is statistically implied

and increases risk of bleeding. So theoretically percutaneous thrombectomy can accomplish all these tasks including a shorter hospital stay. So among the percutaneous thrombectomy devices the Indigo System is based on a really simple

aspiration mechanism and it has shown high success in ischemic stroke. This is one of my first cases with the Indigo System using a 5 MAX needle intervention

adapted to this condition. And it's very easy to understand how is fast and effective this approach to treat intraprocedural distal embolization avoiding potential dramatic clinical consequences, especially in cases like this,

the only one foot vessel. This is also confirmed by this technical note published in 2015 from an Italian group. More recently, other papers came up. This, for example, tell us that

there has been 85% below-the-knee primary endpoint achievement and 54% in above-the-knee lesions. The TIMI score after VAT significantly higher for BTK lesions and for ATK lesions

a necessity of a concomitant endovascular therapy. And James Benenati has already told us the results of the PRISM trials. Looking into our case data very quickly and very superficially we can summarize that we had 78% full revascularization.

In 42% of cases, we did not perform any lytic therapy or very short lytic therapy within three hours. And in 36% a long lytic therapy was necessary, however within 24 hours. We had also 22% failure

with three surgery necessary and one amputation. I must say that among this group of patients, twenty patients, there were also patients like this with extended thrombosis from the groin to the ankle

and through an antegrade approach, that I strongly recommend whenever possible, we were able to lower the aspiration of the clots also in the vessel, in the tibial vessels, leaving only this region, thrombosis

needed for additional three hour infusion of TPA achieving at the end a beautiful result and the patient was discharged a day after. However not every case had similar brilliant result. This patient went to surgery and he went eventually to amputation.

Why this? And why VAT perform better in BTK than in ATK? Just hypotheses. For ATK we can have unknown underlying chronic pathology. And the mismatch between the vessel and the catheter can be a problem.

In BTK, the thrombus is usually soft and short because it is an acute iatrogenic event. Most importantly is the thrombotic load. If it is light, no short, no lytic or short lytic therapy is necessary. Say if heavy, a longer lytic therapy and a failure,

regardless of the location of the thrombosis, must be expected. So moving to the other topic, venous occlusive thrombosis. This is a paper from a German group. The most exciting, a high success rate

without any adjunctive therapy and nine vessels half of them prosthetic branch. The only caution is about the excessive blood loss as a main potential complication to be checked during and after the procedure. This is a case at my cath lab.

An acute aortic renal thrombosis after a open repair. We were able to find the proximate thrombosis in this flush occlusion to aspirate close to fix the distal stenosis

and the distal stenosis here and to obtain two-thirds of the kidney parenchyma on both sides. And this is another patient presenting with acute mesenteric ischemia from vein thrombosis.

This device can be used also transsympatically. We were able to aspirate thrombi but after initial improvement, the patient condition worsened overnight. And the CT scan showed us a re-thrombosis of the vein. Probably we need to learn more

in the management of these patients especially under the pharmacology point of view. And this is a rapid overview on our out-of-lower-limb case series. We had good results in reimplanted renal artery, renal artery, and the pulmonary artery as well.

But poor results in brachial artery, fistula, and superior mesenteric vein. So in conclusion, this technology is an option for quick thromboembolic treatment. It's very effective for BTK intraprocedural embolic events.

The main advantage is a speeding up the blood flow and reestablishing without prolonged thrombolysis or reducing the dosage of the thrombolysis. Completely cleaning up extensive thromobosed vessels is impossible without local lytic therapies. This must be said very clearly.

Indigo technology is promising and effective for treatment of acute renovisceral artery occlusion and sub massive pulmonary embolism. Thank you for your attention. I apologize for not being able to stay for the discussion

because I have a flight in a few hours. Thank you very much.

- Thank you (mumbles) and thank you Dr. Veith for the kind invitation to participate in this amazing meeting. This is work from Hamburg mainly and we all know that TEVAR is the first endovascular treatment of choice but a third of our patients will fail to remodel and that's due to the consistent and persistent

flow in the false lumen over the re-entrance in the thoracoabdominal aorta. Therefore it makes sense to try to divide the compartments of the aorta and try to occlude flow in the false lumen and this can be tried by several means as coils, plug and glue

but also iliac occluders but they all have the disadvantage that they don't get over 24 mm which is usually not enough to occlude the false lumen. Therefore my colleague, Tilo Kolbel came up with this first idea with using

a pre-bulged stent graft at the midportion which after ballooning disrupts the dissection membrane and opposes the outer wall and therefore occludes backflow into the aneurysm sac in the thoracic segment, but the most convenient

and easy to use tool is the candy-plug which is a double tapered endograft with a midsegment that is 18 mm and once implanted in the false lumen at the level of the supraceliac aorta it occludes the backflow in the false lumen in the thoracic aorta

and we have seen very good remodeling with this approach. You see here a patient who completely regressed over three years and it also answers the question how it behaves with respect to true and false lumen. The true lumen always wins and because once

the false lumen thrombosis and the true lumen also has the arterial pressure it does prevail. These are the results from Hamburg with an experience of 33 patients and also the international experience with the CMD device that has been implanted in more than 20 cases worldwide

and we can see that the interprocedural technical success is extremely high, 100% with no irrelevant complications and also a complete false lumen that is very high, up to 95%. This is the evolvement of the candy-plug

over the years. It started as a surgeon modified graft just making a tie around one of the stents evolving to a CMD and then the last generation candy-plug II that came up 2017 and the difference, or the new aspect

of the candy-plug II is that it has a sleeve inside and therefore you can retrieve the dilator without having to put another central occluder or a plug in the central portion. Therefore when the dilator is outside of the sleeve the backflow occludes the sleeve

and you don't have to do anything else, but you have to be careful not to dislodge the whole stent graft while retrieving the dilator. This is a case of a patient with post (mumbles) dissection.

This is the technique of how we do it, access to the false lumen and deployment of the stent graft in the false lumen next to the true lumen stent graft being conscious of the fact that you don't go below the edge of the true lumen endograft

to avoid (mumbles) and the final angiography showing no backflow in the aneurysm. This is how we measure and it's quite simple. You just need about a centimeter in the supraceliac aorta where it's not massively dilated and then you just do an over-sizing

in the false lumen according to the Croissant technique as Ste-phan He-lo-sa has described by 10 to 30% and what is very important is that in these cases you don't burn any bridges. You can still have a good treatment

of the thoracic component and come back and do the fenestrated branch repair for the thoracoabdominal aorta if you have to. Thank you very much for your attention. (applause)

- Thank you, Ulrich. Before I begin my presentation, I'd like to thank Dr. Veith so kindly, for this invitation. These are my disclosures and my friends. I think everyone knows that the Zenith stent graft has a safe and durable results update 14 years. And I think it's also known that the Zenith stent graft

had such good shrinkage, compared to the other stent grafts. However, when we ask Japanese physicians about the image of Zenith stent graft, we always think of the demo version. This is because we had the original Zenith in for a long time. It was associated with frequent limb occlusion due to

the kinking of Z stent. That's why the Spiral Z stent graft came out with the helical configuration. When you compare the inner lumen of the stent graft, it's smooth, it doesn't have kink. However, when we look at the evidence, we don't see much positive studies in literature.

The only study we found was done by Stephan Haulon. He did the study inviting 50 consecutive triple A patients treated with Zenith LP and Spiral Z stent graft. And he did two cases using a two iliac stent and in six months, all Spiral Z limb were patent. On the other hand, when you look at the iliac arteries

in Asians, you probably have the toughest anatomy to perform EVARs and TEVARs because of the small diameter, calcification, and tortuosity. So this is the critical question that we had. How will a Spiral Z stent graft perform in Japanese EIA landing cases, which are probably the toughest cases?

And this is what we did. We did a multi-institutional prospective observational study for Zenith Spiral Z stent graft, deployed in EIA. We enrolled patients from June 2017 to November 2017. We targeted 50 cases. This was not an industry-sponsored study.

So we asked for friends to participate, and in the end, we had 24 hospitals from all over Japan participate in this trial. And the board collected 65 patients, a total of 74 limbs, and these are the results. This slide shows patient demographics. Mean age of 77,

80 percent were male, and mean triple A diameter was 52. And all these qualities are similar to other's reporting in these kinds of trials. And these are the operative details. The reason for EIA landing was, 60 percent had Common Iliac Artery Aneurysm.

12 percent had Hypogastric Artery Aneurysm. And 24 percent had inadequate CIA, meaning short CIA or CIA with thrombosis. Outside IFU was observed in 24.6 percent of patients. And because we did fermoral cutdowns, mean operative time was long, around three hours.

One thing to note is that we Japanese have high instance of Type IV at the final angio, and in our study we had 43 percent of Type IV endoleaks at the final angio. Other things to notice is that, out of 74 limbs, 11 limbs had bare metal stents placed at the end of the procedure.

All patients finished a six month follow-up. And this is the result. Only one stenosis required PTA, so the six months limb potency was 98.6 percent. Excellent. And this is the six month result again. Again the primary patency was excellent with 98.6 percent. We had two major adverse events.

One was a renal artery stenosis that required PTRS and one was renal stenosis that required PTA. For the Type IV index we also have a final angio. They all disappeared without any clinical effect. Also, the buttock claudication was absorbed in 24 percent of patients at one month, but decreased

to 9.5 percent at six months. There was no aneurysm sac growth and there was no mortality during the study period. So, this is my take home message, ladies and gentlemen. At six months, Zenith Spiral Z stent graft deployed in EIA was associated with excellent primary patency

and low rate of buttock claudication. So we have most of the patients finish a 12 month follow-up and we are expecting excellent results. And we are hoping to present this later this year. - [Host] Thank you.

- Thank you (mumbles). The purpose of deep venous valve repair is to correct the reflux. And we have different type of reflux. We know we have primary, secondary, the much more frequent and the rear valve agenesia. In primary deep venous incompetence,

valves are usually present but they are malfunctioning and the internal valvuloplasty is undoubtedly the best option. If we have a valve we can repair it and the results are undoubtedly the better of all deep vein surgery reconstruction

but when we are in the congenital absence of valve which is probably the worst situation or we are in post-thrombotic syndrome where cusps are fully destroyed, the situation is totally different. In this situation, we need alternative technique

to provide a reflux correction that may be transposition, new valve or valve transplants. The mono cuspid valve is an option between those and we can obtain it by parietal dissection. We use the fibrotic tissue determined by the

sickening of the PTS event obtaining a kind of flap that we call valve but as you can realize is absolutely something different from a native valve. The morphology may change depending on the wall feature and the wall thickness

but we have to manage the failure of the mono cuspid valve which is mainly due to the readhesion of the flap which is caused by the fact that if we have only a mono cuspid valve, we need a deeper pocket to reach the contralateral wall so bicuspid valve we have

smaller cusps in mono cuspid we have a larger one. And how can we prevent readhesion? In our first moment we can apply a technical element which is to stabilize the valve in the semi-open position in order not to have the collapse of the valve with itself and then we had decide to apply an hemodynamic element.

Whenever possible, the valve is created in front of a vein confluence. In this way we can obtain a kind of competing flow, a better washout and a more mobile flap. This is undoubtedly a situation that is not present in nature but helps in providing non-collapse

and non-thrombotic events in the cusp itself. In fact, if we look at the mathematical modeling in the flow on valve you can see how it does work in a bicuspid but when we are in a mono cuspid, you see that in the bottom of the flap

we have no flow and here there is the risk of thrombosis and here there is the risk of collapse. If we go to a competing flow pattern, the flap is washed out alternatively from one side to the other side and this suggest us the idea to go through a mono cuspid

valve which is not just opens forward during but is endovascular and in fact that's what we are working on. Undoubtedly open surgery at the present is the only available solution but we realized that obviously to have the possibility

to have an endovascular approach may be totally different. As you can understand we move out from the concept to mimic nature. We are not able to provide the same anatomy, the same structure of a valve and we have to put

in the field the possibility to have no thrombosis and much more mobile flap. This is the lesson we learn from many years of surgery. The problem is the mobile flap and the thrombosis inside the flap itself. The final result of a valve reconstruction

disregarding the type of method we apply is to obtain an anti-reflux mechanism. It is not a valve, it is just an anti-reflux mechanism but it can be a great opportunity for patient presenting a deep vein reflux that strongly affected their quality of life.

Thank you.

- Thank you, it's a pleasure to be here. I'll address how the Indigo Thrombectomy technology can expand the reach of what you can do for your patients. It will preserve treatment options, improve patient outcomes, conserve hospital resources,

and perhaps most importantly, improve your day. The old treatment strategy, every time I had someone with acute limb ischemia I felt like I was shopping at this store. When I went to surgery, I wished I could put a drip catheter in, it lasts a little longer,

to mop up some di when I went to the angio suite, I wished I could cut down and remove some more macroscopic debris. I submit that the new Indigo technology

will provide a new strategy for treating acute arterial ischemia. On the same concepts are predicated STEMI, code stroke, Level I trauma alerts, we've instituted acute aorta, and piggybacked on that, an acute arterial ischemia protocol.

So that means when a patient like this presents with acute arterial ischemia, they get an algorithmic, systemic, trained, metered approach. They go past the holding room directly to the endovascular suite,

and all the processes happen in parallel, not in series. The call team is trained and dedicated, and while anesthesia is working up top with labs and lines, we use the duplex ultrasound to pick carefully our access sites. A faster time to reperfusion allows us to

do it and avoid general anesthesia, incision in hostile groins, and the exposure of lytic therapy, resulting in a decreased morbidity and mortality. Being able to treat the full spectrum of the arterial tree allows us to run options.

We preserve options by first mopping up more proximal clot, and then dripping distally when we need to, or, dripping distally to open up distal targets for surgical bypasses. As an example, this was a recent case

on a trauma CT scan, injured inthrelane aorta with emblogenic thrombus confirmed on intravascular ultrasound. We went in with a large bore system, a cath to aspirate the clot, and then used a cover stent to repair the aorta.

We shot an arteriogram the lower extremities, noticed that it embolized distally, and we used a Cat 6 to pluck out this clot and restore flow. Able to work up and down the full arterial tree. A learning curve for me was to understand that debris has to be corked to removal, which means no flow.

And most other worlds in vascular surgery, flow is good. No flow is bad. Also, you have to vacuum the clot out. Which means you have to uncross the lesion, which is counter intuitive for most of the precepts I've learned.

I've learned to use long sheaths to approach the lesion and to use larger catheters to remove more macroscopic debris. I rarely use the separator, I engage it and cork it for 90 seconds. That allows it to get a firm grip and purchase on it.

And I have to remember that no flow is good. This demonstrates how you approach the catheter with a large sheath. Under roadmap guidance you turn the aspiration vacuum on immediately before you cork it to minimize blood loss. And you use it like a vacuum by uncrossing the lesion

and let it slowly engage and aspirate the catheter. Ninety seconds allows it to get a firm grip and purchase so you can extract it without breaking it loose. I rarely use a separator, I use it only for large thrombus burdens, sub-acute clot, adherent debris,

or when the Indigo catheter is clogged. I strip out the catheter with the separator like a pipe cleaner, and then, every once in a while, on a subacute clot, I'll peck and morcellate it with a separator. Typically, in my lab, when I have new technology

I never have the team trained when I have just the right case, so I've learned over time, to train the team first. And with a trained team, they've taught me a lot. I've found with the Indigo catheter it's hard for me to watch the monitor,

work the catheter, handle the on-off switch, and watch the flow in the canister. So, what we do is we have a spotter who's not scrubbed. They taught me to take the on-off switch out, and then mechanically kink the tubing to make and on-off switch.

And they provide me feedback and just say fast, slow, or corked, so I can run the catheter and watch the monitor. I've learned to beware of the Cook Flexor sheaths, because they scuff up the tip. Use a check flow valve that unscrews from the

catheter if possible. I use coaxial catheters whenever possible, and I telescope them. You can telescope large catheters over small catheters. I use large sheaths and catheters whenever possible, using the preclose technique,

and then you can preserve options if you want to press more distally, you can cinch down, remove the large sheath, put in a 4 5 French, and then press ahead. I also, after I use a pulse technique, will occasionally use the Jungle Juice.

The team taught me the Jungle Juice is half strength contrast, some TPA and some nitroglycerine. When I lace the clot with Jungle Juice, I can observe fluoroscopically, the progress I'm making as I'm aspirating the clot. Thank you.

- Thank you to the moderators, thank you to Dr. Veith for having me. Let's go! So my topic is to kind of introduce the ATTRACT trial, and to talk a little bit about how it affected, at least my practice, when it comes to patients with acute DVT.

I'm on the scientific advisory board for a company that makes IVC filters, and I also advise to BTG, so you guys can ask me about it later if you want. So let's talk about a case. A 50-year-old man presents

from an outside hospital to our center with left lower extremity swelling. And this is what somebody looks like upon presentation. And pulses, motor function, and sensation are actually normal at this point.

And he says to us, "Well, symptoms started "three days ago. "They're about the same since they started," despite being on anticoagulation. And he said, "Listen guys, in the other hospital, "they wouldn't do anything.

"And I want a procedure because I want the clot "out of me." so he's found to have this common femoral vein DVT. And the question is should endovascular clot removal be performed for this patient?

Well the ATTRACT trial set off to try and prevent a complication you obviously all know about, called the post-thrombotic syndrome, which is a spectrum from sort of mild discomfort and a little bit of dyspigmentation and up

to venous ulcerations and quite a lot of morbidity. And in ATTRACT, patients with proximal DVT were randomized to anticoagulation alone or in combination with pharma mechanical catheter-directed thrombolysis.

And the reason I put proximal in quotes is because it wasn't only common sort of femoral vein clots, but also femoral vein clots including the distal femoral vein were included eventually. And so patients with clots were recruited,

and as I said, they were randomized to those two treatments. And what this here shows you is the division into the two groups. Now I know this is a little small, but I'll try and kind of highlight a few things

that are relevant to this talk. So if you just read the abstract of the ATTRACT trial published last year in the New England Journal of Medicine, it'll seem to you that the study was a negative study.

The conclusion and the abstract is basically that post-thrombotic syndrome was not prevented by performing these procedures. Definitely post-thrombotic syndrome is still frequent despite treatment. But there was a signal for less severe

post-thrombotic syndrome and for more bleeding. And I was hoping to bring you all, there's an upcoming publication in circulation, hopefully it'll be online, I guess, over the weekend or early next week, talking specifically about patients

with proximal DVT. But you know, I'm speaking now without those slides. So what I can basically show you here, that at 24 months, unfortunately, there was no, well not unfortunately,

but the fact is, it did cross the significance and it was not significant from that standpoint. And what you can see here, is sort of a continuous metric of post-thrombotic syndrome. And here there was a little bit of an advantage

towards reduction of severe post-thrombotic syndrome with the procedure. What it also shows you here in this rectangle, is that were more bleeds, obviously, in the patients who received the more aggressive therapy.

One thing that people don't always talk about is that we treat our patients for two reasons, right? We want to prevent post-thrombotic syndrome but obviously, we want to help them acutely. And so what the study also showed,

was that acute symptoms resolved more quickly in patients who received the more aggressive therapy as opposed to those who did not. Again, at the price of more bleeding. So what happened to this patient? Well you know,

he presented on a Friday, obviously. So we kind of said, "Yeah, we probably are able "to try and do something for you, "but let's wait until Monday." And by Monday, his leg looked like this, with sort of a little bit of bedrest

and continued anticoagulation. So at the end of the day, no procedure was done for this particular patient. What are my take home messages, for whatever that's worth? Well I think intervention for DVT

has several acute indications. Restore arterial flow when phlegmasia is the problem, and reduce acute symptoms. I think intervention for common femoral and more proximal DVT likely does have long-term benefit, and again, just be

on the lookout for that circ paper that's coming out. Intervention for femoral DVT, so more distal DVT, in my opinion, is rarely indicated. And in the absence of phlegmasia, for me, thigh swelling is a good marker for a need

for a procedure, and I owe Dr. Bob Schainfeld that little tidbit. So thank you very much for listening.

- Thank you very much and thank you Dr. Veith for the kind invite. Here's my disclosures, clearly relevant to this talk. So we know that after EVAR, it's around the 20% aortic complication rate after five years in treating type one and three Endoleaks prevents subsequent

secondary aortic rupture. Surveillance after EVAR is therefore mandatory. But it's possible that device-specific outcomes and surveillance protocols may improve the durability of EVAR over time. You're all familiar with this graph for 15 year results

in terms of re-intervention from the EVAR-1 trials. Whether you look at all cause and all re-interventions or life threatening re-interventions, at any time point, EVAR fares worse than open repair. But we know that the risk of re-intervention is different

in different patients. And if you combine pre-operative risk factors in terms of demographics and morphology, things are happening during the operations such as the use of adjuncts,

or having to treat intro-operative endoleak, and what happens to the aortic sac post-operatively, you can come up with a risk-prediction tool for how patients fare in the longer term. So the LEAR model was developed on the Engage Registry and validated on some post-market registries,

PAS, IDE, and the trials in France. And this gives a predictive risk model. Essentially, this combines patients into a low risk group that would have standard surveillance, and a higher risk group, that would have a surveillance plus

or enhanced surveillanced model. And you get individual patient-specific risk profiles. This is a patient with around a seven centimeter aneurysm at the time of repair that shows sac shrinkage over the first year and a half, post-operatively. And you can see that there's really a very low risk

of re-intervention out to five years. These little arrow bars up here. For a patient that has good pre-operative morphology and whose aneurysm shrinks out to a year, they're going to have a very low risk of re-intervention. This patient, conversely, had a smaller aneurysm,

but it grew from the time of the operation, and out to two and a half years, it's about a centimeter increase in the sac. And they're going to have a much higher risk of re-intervention and probably don't need the same level of surveillance as the first patient.

and probably need a much higher rate of surveillance. So not only can we have individualized predictors of risk for patients, but this is the regulatory aspect to it as well.

Multiple scenario testing can be undertaken. And these are improved not only with the pre-operative data, but as you've seen with one-year data, and this can tie in with IFU development and also for advising policy such as NICE, which you'll have heard a lot about during the conference.

So this is just one example. If you take a patient with a sixty-five millimeter aneurysm, eighteen millimeter iliac, and the suprarenal angle at sixty degrees. If you breach two or more of these factors in red, we have the pre-operative prediction.

Around 20% of cases will be in the high risk group. The high risk patients have about a 50-55% freedom from device for related problems at five years. And the low risk group, so if you don't breach those groups, 75% chance of freedom from intervention.

In the green, if you then add in a stent at one year, you can see that still around 20% of patients remain in the high risk group. But in the low risk group, you now have 85% of patients won't need a re-intervention at five years,

and less of a movement in the high risk group. So this can clearly inform IFU. And here you see the Kaplan-Meier curves, those same groups based pre-operatively, and at one year. In conclusion, LEAR can provide

a device specific estimation of EVAR outcome out to five years. It can be based on pre-operative variables alone by one year. Duplex surveillance helps predict risk. It's clearly of regulatory interest in the outcomes of EVAR.

And an E-portal is being developed for dissemination. Thank you very much.

- Thank you, Dr. Ouriel, Dr. Lurie. Ladies and gentlemen. Brian, that was a very fair overview of the ATTRACT trial as it was published in the New England Journal, so thank you. And these are my disclosures. So Dr. DeRubertis did a very nice review of this paper

that was published in the New England Journal December 7th of last year. He went over very nicely that it was NIH sponsored, phase III, randomized, controlled, multicenter, 692 patients randomized, anticoagulation alone versus anticoagulation plus catheter-based techniques.

Now one thing I want to call your attention to is the fact that patients with deep venous thrombosis, acute deep venous thrombosis, who were eligible for randomization, were stratified before they were randomized into two different groups, iliofemoral DVT or fem-pop DVT.

So in my opinion, these are not subgroups because the randomization of one group had no effect on the randomization of another, so I would argue that these are independent groups. That makes a big difference when you do statistical analyses.

The other important issue that I want to point out is that the outcomes were pre-determined to what we were going to analyze. We had to choose one as a primary endpoint and the others as secondary, but these were pre-determined end points that were up for analysis, not post hoc analyses.

And post-thrombotic syndrome was determined at the time, 12 years ago when we wrote the protocol, to be the primary end point. I would submit that we would not choose that as a primary end point if we wrote the protocol today. Moderate to severe post-thrombotic syndrome

certainly would be more appropriate. Leg pain, swelling, health-related quality of life, certainly important. This is the outcome, and unfortunately, it did not reach significance. There was no difference between the two groups

and there was an increased risk of bleeding, but this is the outcome that drove opinion about ATTRACT, but we don't really do catheter-directed thrombolysis for fem-pop DVT. Therefore, the results of the iliofemoral patients will be the most meaningful and that paper was written

and that paper has been accepted by circulation. It should be out shortly, but there were 391 iliofemoral DVT patients and the primary outcome was no different than the primary outcome in the overall trial. But are they?

If we had chosen the Venous Clinical Severity Score in place of the Villalta score for analysis of that primary end point, it would've been a positive study. So if we chose a different tool to analyze, our primary end point would've been positive for the iliofemoral DVT patients.

If we look at moderate to severe post-thrombotic syndrome, a significant difference. Control patients had a 56% increased risk of moderate to severe PTS versus the control patients. If we look at severe post-thrombotic syndrome, control patients had a 72% increased risk

of severe PTS versus control. If we look at the overall severity of the Villalta score in PTS, we can see that there is a significant difference favoring percutaneous catheter-directed thrombolysis. When we look at pain, the patient's pain was significantly reduced in the PCDT patients compared to control.

We look at edema, significant reduction in edema at day 10 and day 30 in patients who received catheter-directed thrombolysis compared to control. Disease-specific quality of life significantly favored patients who had PCDT compared to control. So we look at moderate to severe, severe, pain,

quality of life. There was a price to pay. Major bleeding was increased, but the P-value was no different. I will not argue that patients are not at increased risk. They are at increased risk for bleeding,

but this is an historically low bleeding rate for catheter-directed thrombolysis and there were no intracranial bleeds. No difference in recurrent deep venous thrombosis. No difference in mortality at 24 months between the two groups.

So in conclusion, the primary end point, reduction of any PTS defined by a Villalta score of 5 or more, no difference, but an item that has not reached the level of discussion that we will need to consider is that 14% of our patients had a normal Villalta score coming into the study.

It's impossible to improve upon that, but there is a significant reduction in any PTS if you use the Venous Clinical Severity Score, reduction of moderate and severe post-thrombotic syndrome, reduction of pain and swelling, and improved disease-specific quality of life compared to controls.

And I think these are the meaningful end points that patients appreciate and these are the points of discussion that will be covered in the article in circulation that will be published very soon. Thank you for your attention.

- So I'd like to thank Dr. Ascher, Dr. Sidawy, Dr. Veith, and the organizers for allowing us to present some data. We have no disclosures. The cephalic arch is defined as two centimeters from the confluence of the cephalic vein to either the auxiliary/subclavian vein. Stenosis in this area occurs about 39%

in brachiocephalic fistulas and about 2% in radiocephalic fistulas. Several pre-existing diseases can lead to the stenosis. High flows have been documented to lead to the stenosis. Acute angles. And also there is a valve within the area.

They're generally short, focal in nature, and they're associated with a high rate of thrombosis after intervention. They have been associated with turbulent flow. Associated with pre-existing thickening.

If you do anatomic analysis, about 20% of all the cephalic veins will have that. This tight anatomical angle linked to the muscle that surrounds it associated with this one particular peculiar valve, about three millimeters from the confluence.

And it's interesting, it's common in non-diabetics. Predictors if you are looking for it, other than ultrasound which may not find it, is calcium-phosphate product, platelet count that's high, and access flow.

If one looks at interventions that have commonly been reported, one will find that both angioplasty and stenting of this area has a relatively low primary patency with no really discrimination between using just the balloon or stent.

The cumulative patency is higher, but really again, deployment of an angioplasty balloon or deployment of a stent makes really no significant difference. This has been associated with residual stenosis

greater than 30% as one reason it fails, and also the presence of diabetes. And so there is this sort of conundrum where it's present in more non-diabetics, but yet diabetics have more of a problem. This has led to people looking to other alternatives,

including stent grafts. And in this particular paper, they did not look at primary stent grafting for a cephalic arch stenosis, but mainly treating the recurrent stenosis. And you can see clearly that the top line in the graph,

the stent graft has a superior outcome. And this is from their paper, showing as all good paper figures should show, a perfect outcome for the intervention. Another paper looked at a randomized trial in this area and also found that stent grafts,

at least in the short period of time, just given the numbers at risk in this study, which was out after months, also had a significant change in the patency. And in their own words, they changed their practice and now stent graft

rather than use either angioplasty or bare-metal stents. I will tell you that cutting balloons have been used. And I will tell you that drug-eluting balloons have been used. The data is too small and inconclusive to make a difference. We chose a different view.

We asked a simple question. Whether or not these stenoses could be best treated with angioplasty, bare-metal stenting, or two other adjuncts that are certainly related, which is either a transposition or a bypass.

And what we found is that the surgical results definitely give greater long-term patency and greater functional results. And you can see that whether you choose either a transposition or a bypass, you will get superior primary results.

And you will also get superior secondary results. And this is gladly also associated with less recurrent interventions in the ongoing period. So in conclusion, cephalic arch remains a significant cause of brachiocephalic AV malfunction.

Angioplasty, across the literature, has poor outcomes. Stent grafting offers the best outcomes rather than bare-metal stenting. We have insufficient data with other modalities, drug-eluting stents, drug-eluting balloons,

cutting balloons. In the correct patient, surgical options will offer superior long-term results and functional results. And thus, in the good, well-selected patient, surgical interventions should be considered

earlier in this treatment rather than moving ahead with angioplasty stent and then stent graft. Thank you so much.

- Thank you Professor Veith. Thank you for giving me the opportunity to present on behalf of my chief the results of the IRONGUARD 2 study. A study on the use of the C-Guard mesh covered stent in carotid artery stenting. The IRONGUARD 1 study performed in Italy,

enrolled 200 patients to the technical success of 100%. No major cardiovascular event. Those good results were maintained at one year followup, because we had no major neurologic adverse event, no stent thrombosis, and no external carotid occlusion. This is why we decided to continue to collect data

on this experience on the use of C-Guard stent in a new registry called the IRONGUARD 2. And up to August 2018, we recruited 342 patients in 15 Italian centers. Demographic of patients were a common demographic of at-risk carotid patients.

And 50 out of 342 patients were symptomatic, with 36 carotid with TIA and 14 with minor stroke. Stenosis percentage mean was 84%, and the high-risk carotid plaque composition was observed in 28% of patients, and respectively, the majority of patients presented

this homogenous composition. All aortic arch morphologies were enrolled into the study, as you can see here. And one third of enrolled patients presented significant supra-aortic vessel tortuosity. So this was no commerce registry.

Almost in all cases a transfemoral approach was chosen, while also brachial and transcervical approach were reported. And the Embolic Protection Device was used in 99.7% of patients, with a proximal occlusion device in 50 patients.

Pre-dilatation was used in 89 patients, and looking at results at 24 hours we reported five TIAs and one minor stroke, with a combined incidence rate of 1.75%. We had no myocardial infection, and no death. But we had two external carotid occlusion.

At one month, we had data available on 255 patients, with two additional neurological events, one more TIA and one more minor stroke, but we had no stent thrombosis. At one month, the cumulative results rate were a minor stroke rate of 0.58%,

and the TIA rate of 1.72%, with a cumulative neurological event rate of 2.33%. At one year, results were available on 57 patients, with one new major event, it was a myocardial infarction. And unfortunately, we had two deaths, one from suicide. To conclude, this is an ongoing trial with ongoing analysis,

and so we are still recruiting patients. I want to thank on behalf of my chief all the collaborators of this registry. I want to invite you to join us next May in Rome, thank you.

- Thanks Dr. Weaver. Thank you Dr. Reed for the invitation, once again, to this great meeting. These are my disclosures. So, open surgical repair of descending aortic arch disease still carries some significant morbidity and mortality.

And obviously TEVAR as we have mentioned in many of the presentations has become the treatment of choice for appropriate thoracic lesions, but still has some significant limitations of seal in the aortic arch and more techniques are being developed to address that.

Right now, we also need to cover the left subclavian artery and encroach or cover the left common carotid artery for optimal seal, if that's the area that we're trying to address. So zone 2, which is the one that's,

it is most commonly used as seal for the aortic arch requires accurate device deployment to maximize the seal and really avoid ultimately, coverage of the left common carotid artery and have to address it as an emergency. Seal, in many of these cases is not maximized

due to the concern of occlusion of the left common carotid artery and many of the devices are deployed without obtaining maximum seal in that particular area. Failure of accurate deployment often leads to a type IA endoleak or inadvertent coverage

of the left common carotid artery which can become a significant problem. The most common hybrid procedures in this group of patients include the use of TEVAR, a carotid-subclavian reconstruction and left common carotid artery stenting,

which is hopefully mostly planned, but many of the times, especially when you're starting, it may be completely unplanned. The left common carotid chimney has been increasingly used to obtain a better seal

in this particular group of patients with challenging arches, but there's still significant concerns, including patients having super-vascular complications, stroke, Type A retrograde dissections and a persistent Type IA endoleak

which can be very challenging to be able to correct. There's limited data to discuss this specific topic, but some of the recent publications included a series of 11 to 13 years of treatment with a variety of chimneys.

And these publications suggest that the left common carotid chimneys are the most commonly used chimneys in the aortic arch, being used 76% to 89% of the time in these series. We can also look at these and the technical success

is very good. Mortality's very low. The stroke rate is quite variable depending on the series and chimney patency's very good. But we still have a relatively high persistent

Type IA endoleak on these procedures. So what can we do to try to improve the results that we have? And some of these techniques are clearly applicable for elective or emergency procedures. In the elective setting,

an open left carotid access and subclavian access can be obtained via a supraclavicular approach. And then a subclavian transposition or a carotid-subclavian bypass can be performed in preparation for the endovascular repair. Following that reconstruction,

retrograde access to left common carotid artery can be very helpful with a 7 French sheath and this can be used for diagnostic and therapeutic purposes at the same time. The 7 French sheath can easily accommodate most of the available covered and uncovered

balloon expandable stents if the situation arises that it's necessary. Alignment of the TEVAR is critical with maximum seal and accurate placement of the TEVAR at this location is paramount to be able to have a good result.

At that point, the left common carotid artery chimney can be deployed under control of the left common carotid artery. To avoid any embolization, the carotid can be flushed, primary repaired, and the subclavian can be addressed

if there is concern of a persistent retrograde leak with embolization with a plug or other devices. The order can be changed for the procedure to be able to be done emergently as it is in this 46 year old policeman with hypertension and a ruptured thoracic aneurism.

The patient had the left common carotid access first, the device deployed appropriately, and the carotid-subclavian bypass performed in a more elective fashion after the rupture had been addressed. So, in conclusion, carotid chimney's and TEVAR

combination is a frequently used to obtain additional seal on the aortic arch, with pretty good results. Early retrograde left common carotid access allows safe TEVAR deployment with maximum seal,

and the procedure can be safely performed with low morbidity and mortality if we select the patients appropriately. Thank you very much.

- [Nicos] Thanks so much. Good afternoon everybody. I have no disclosures. Getting falsely high velocities because of contralateral tight stenosis or occlusion, our case in one third of the people under this condition, high blood pressure, tumor fed by the carotid, local inflammation, and rarely by arteriovenous fistula or malformation.

Here you see a classic example, the common carotid, on the right side is occluded, also the internal carotid is occluded, and here you're getting really high velocity, it's 340, but if you visually look at the vessel, the vessel is pretty wide open. So it's very easy to see this discordance

between the diameter and the velocity. For occasions like this I'm going to show you with the ultrasound or other techniques, planimetric evaluation and if I don't go in trials, hopefully we can present next year. Another condition is to do the stenosis on the stent.

Typically the error here is if you measure the velocity outside the stent, inside the stent, basically it's different material with elastic vessel, and this can basically bring your ratio higher up. Ideally, when possible, you use the intra-stent ratio and this will give you a more accurate result.

Another mistake that is being done is that you can confuse the external with the internal, particularly also we found out that only one-third of the people internalized the external carotid, but here you should not make this mistake because you can see the branches obviously, but really, statistically speaking, if you take 100

consecutively occluded carotids, by statistical chance 99% of the time or more it will be not be an issue, that's common sense. And of course here I have internalization of the external, let's not confuse there too, but here we don't have any

stenosis, really we have increased velocity of the external because a type three carotid body tumor, let's not confuse this from this issue. Another thing which is a common mistake people say, because the velocity is above the levels we put, you see it's 148 and 47, this will make you with a grand criteria

having a 50% stenosis, but it's also the thing here is just tortuosity, and usually on the outer curve of a vessel or in a tube the velocity is higher. Then it can have also a kink, which can produce the a mild kink like this

on here, it can make the stenosis appear more than 50% when actually the vessel does have a major issue. This he point I want to make with the FMD is consistently chemical gradual shift, because the endostatin velocity is higher

than people having a similar degree of stenosis. Fistula is very rare, some of our over-diligent residents sometimes they can connect the jugular vein with roke last year because of this. Now, falsely low velocities because of proximal stenosis of

the Common Carotid or Brachiocephalic Artery, low blood pressure, low cardiac output, valve stenosis efficiency, stroke, and distal ICA stenosis or occlusion, and ICA recanalization. Here you see in a person with a real tight stenosis, basically the velocity is very low,

you don't have a super high velocity. Here's a person with an occlusion of the Common Carotid, but then the Internal Carotid is open, it flooded vessels from the external to the internal, and that presses a really tight stenosis of the external or the internal, but the velocities are low just because

the Common Carotid is occluded. Here is a phenomenon we did with a university partner in 2011, you see a recanalized Carotid has this kind of diameter, which goes all the way to the brain and a velocity really low but a stenosis really tight. In a person with a Distal dissection, you have low velocity

because basically you have high resistance to outflow and that's why the velocities are low. Here is an occlusion of the Brachiocephalic artery and you see all the phenomena, so earlier like the Common Carotid, same thing with the Takayasu's Arteritis, and one way I want to finish

this slide is what you should do basically when the velocity must reduce: planimetric evaluation. I'll give you the preview of this idea, which is supported by intracarotid triplanar arteriography. If the diameter of the internal isn't two millimeters, then it's 95% possible the value for stenosis,

regardless of the size of the Internal Carotid. So you either use the ICAs, right, then you're for sure a good value, it's a simple measurement independent of everything. Thank you very much.

- Thank you Dr. Asher. What an honor it is to be up here with Dr. Veith and Dr. Asher towards the end. You guys are leading by example being at the end of the meetings. So, thank you for allowing me to be up and talking about something

that not a lot of vascular surgeons have experience with, including me. I have no disclosures. On your left, I have listed some of the types of diseases that we most commonly see in the vertebral artery, and there are quite a lot.

And on the right, the standard types of treatment that we pursue in vascular surgery or as a vascular specialist. And often, in the vertebral artery, if we are going to pursue treatment, it's the endovascular route.

But I'll talk a little bit about open surgery. The clinical presentation is often vague. And the things I wanted to point out here in this long list are things like alternating paresthesias, dysphagia, or perioral numbness may be something in the history to look for

that you may not be thinking about when you're thinking about vertebral basilar disease. The anatomy looks straightforward in this picture, with the four segments, as you can see. It gets a little more complicated with just the arterial system,

but then when you start looking at all these structures, that you have to get out of of the way to get to the vertebral artery, it actually can be a difficult operation, particularly even in the V1 segment. The V1 typically is atherosclerotic disease.

V2 is often compression, via osteophyte or musculo-tendon structures. And V3 and V4, at the top, are typically from a dissection injury from sort of stretch or trauma injury. The pathophysiology isn't that well understood.

You have varying anatomy. It's very difficult to access this artery. Symptoms can be difficult to read, and treatment outcomes are not as reliable. But I'm going to take you through a very quick path through history here in the description

of the V1 segment exposure by Dr. Rentschler from 1958. And I love these pictures. Here is a transverse incision over the sternocleidomastoid, just above the clavicular head on the right side. And once you get the sternoclavicular head divided, you can see the longus colli muscle there.

Anteromedial is the carotid. Of course, you surround that with a Penrose drain. And then once you do that, you can separate your longus colli, and deep to that, the vertebral artery just easily slips right up, so you can do your transposition.

It's not quite that easy. I've done one of these operations, and it was difficult finding t e. And, again, here is on the opposite side, you can see the transposition in this cartoon.

Dr. Berguer is the world's expert, and a lot of this open surgical work comes out of the University of Michigan. Here is a study looking at 369 consecutive extracranial vertebral artery reconstructions. You can see the demographics of clinical presentation.

And note that about 34% of patients are presenting with hemispheric symptoms, with 60% in the vertebral basilar distribution. 300 of these reconstructions were for atherosclerosis. And the outcomes were pretty good. Before 1991, there wasn't really a protocol in place

in assessing and doing these procedures. And you can see the stroke and death rates of 4.1 and 3.2% respectively. And then the outcomes after 1991 are considerably better with a five year patency rate of 80%. So, in summary, vertebral artery disease is,

I think if you review this, is somewhat under diagnosed. Revascularization is a viable option. Most often, it's endovascular. But if you have endo-hostility, then an open, particularly for the V1 segment, may be a better option.

And this requires people with good operative experience. Thank you very much.

- Ladies and gentlemen, I thank Frank Veith and the organizing committee for the invitation. I have no disclosures for this presentation. Dialysis is the life line of patients with end-stage renal failure. Hemodialysis can be done by constructing an A-V fistula, utilizing a graft or through a central venous catheter.

Controversy as to the location of A-V fistula, size of adequate vein and priority of A-V fistula versus A-V graft exists among different societies. Our aims were to present our single center experience with A-V fistulas and grafts. Compare their patency rates,

compare different surgical sites, and come up with preferences to allow better and longer utilization. We collected all patients who underwent A-V fistula or A-V graft between the years 2008 through 2014. We included all patients who had preoperative

duplex scanning or those deemed to have good vessels on clinical examination. Arteries larger than two point five millimeter and veins larger than three millimeter were considered fit. Dialysis was performed three times per week. Follow up included check for a thrill,

distal pulse in the arter non-increased venous pressure or visible effective dialysis and no prolonged bleeding. Any change of one of the above would led to obtaining

fistulogram resulting in either endovascular or open repair of the fistula. We started with 503 patients, 32 of which were excluded due to primary failure within 24 hours. We considered this, of course, the surgeon's blame. So we left with 471 patients with a mean age of 58 years,

51 were older than 60, there was a male predominance of 63%, and over half were diabetics. The type of fistula was 41% brachio-cephalic fistula, 30% radio-cephalic fistula, 16% A-V Graft, and 13% brachio-basilic fistula.

Overall, we had 84% fistulas and 16% grafts. The time to first dialysis and maturation of fistula was approximately six weeks. First use of grafts was after two weeks. 11 patients with A-V fistula needed early intervention prior to or after the first dialysis session.

In sharp contrast, none of the A-V grafts needed early intervention. 68 patients were operated for their first ever fistula without duplex scanning due to clinically good vessels. Their patency was comparable to those who underwent a preoperative scanning.

Looking at complications, A-V grafts needed more reintervention than fistulas. All of them were late. Infection was more prominent in the graft group and pseudoaneurysms were more prominent in the A-V fistula group, some of them occluded

or invaded the skin and resulted in bleeding. Here's a central vein occlusion and you can see this lady is after a brachio-basilic A-V shunt. You can see the swollen arm, the collaterals. Here are multiple venous aneurysms. Here's an ulcer.

When we looked at primary patency of A-V fistulas versus graft, A-V fistulas fared better than grafts for as long as five years. When you looked at 50% patency in grafts, it was approximately 18 months, in Fistula, 13. Here's an assisted primary patency by endovascular technique

and when we looked at the secondary patency for the first 24, two years, months, there was no difference between A-V fistulas and A-V grafts, but there's a large difference afterwards. Comparing radio-cephalic fistula to brachio-cephalic fistula there was really no big difference in maturation.

The time was approximately six weeks. As for primary patency there is a trend towards better patency with brachio-cephalic fistula after six months, one year, and two years, but it didn't reach statistical significance. For patients with diabetes,

differences were statistically significant. Brachio-cephalic fistula showed a trend toward shorter maturation time, needed less reintervention, and had a longer patency rate. In conclusions then, ladies and gentlemen, A-V fistula require a longer maturation time

and have higher pseudoaneurysm formation rate, but better patency rates compared to A-V grafts. A-V grafts have a faster maturation time, but more late interventions are required and infection is more common. Finally, diabetic patients have a better result

with proximal A-V fistulas. Thank you for the opportunity to present our data.

- Good morning, I would like to thank Dr. Veith, and the co-chairs for inviting me to talk. I have nothing to disclose. Some background on this information, patients with Inflammatory Bowel Disease are at least three times more likely to suffer a thrombo-embolic event, when compared to the general population.

The incidence is 0.1 - 0.5% per year. Overall mortality associated with these events can be as high as 25%, and postmortem exams reveal an incidence of 39-41% indicating that systemic thrombo-embolism is probably underdiagnosed. Thrombosis mainly occurs during disease exacerbation,

however proctocolectomy has not been shown to be preventative. Etiology behind this is not well known, but it's thought to be multifactorial. Including decrease in fibrinolytic activity, increase in platelet activation,

defects in the protein C pathway. Dyslipidemia and long term inflammation also puts patients at risk for an increase in atherosclerosis. In addition, these patients lack vitamins, are often dehydrated, anemic, and at times immobilized. Traditionally, the venous thrombosis is thought

to be more common, however recent retrospective review of the Health Care Utilization Project nationwide inpatient sample database, reported not only an increase in the incidence but that arterial complications may happen more frequently than venous.

I was going to present four patients over the course of one year, that were treated at my institution. The first patient is 25 year old female with Crohn's disease, who had a transverse colectomy one year prior to presentation. Presented with right flank pain, she was found to have

right sided PE, a right sided pulmonary vein thrombosis and a left atrial thrombosis. She was admitted for IV heparin, four days later she had developed abdominal pains, underwent an abdominal CTA significant for SMA occlusion prompting an SMA thrombectomy.

This is a picture of her CAT scan showing the right PE, the right pulmonary vein thrombosis extending into the left atrium. The SMA defect. She returned to the OR for second and third looks, underwent a subtotal colectomy,

small bowel resection with end ileostomy during the third operation. She had her heparin held post-operatively due to significant post-op bleeding, and over the next three to five days she got significantly worse, developed progressive fevers increase found to have

SMA re-thrombosis, which you can see here on her CAT scan. She ended up going back to the operating room and having the majority of her small bowel removed, and went on to be transferred to an outside facility for bowel transplant. Our second patient is a 59 year old female who presented

five days a recent flare of ulcerative colitis. She presented with right lower extremity pain and numbness times one day. She was found to have acute limb ischemia, category three. An attempt was made at open revascularization with thrombectomy, however the pedal vessels were occluded.

The leg was significantly ischemic and flow could not be re-established despite multiple attempts at cut-downs at different levels. You can see her angiogram here at the end of the case. She subsequently went on to have a below knee amputation, and her hospital course was complicated by

a colonic perforation due to the colitis not responding to conservative measures. She underwent a subtotal colectomy and end ileostomy. Just in the interest of time we'll skip past the second, third, and fourth patients here. These patients represent catastrophic complications of

atypical thrombo-embolic events occurring in IBD flares. Patients with inflammatory disease are at an increased risk for both arterial and venous thrombotic complications. So the questions to be answered: are the current recommendations adequate? Currently heparin prophylaxis is recommended for

inpatients hospitalized for severe disease. And, if this is not adequate, what treatments should we recommend, the medication choice, and the duration of treatment? These arterial and venous complications occurring in the visceral and peripheral arteries

are likely underappreciated clinically as a risk for patients with IBD flares and they demonstrate a need to look at further indications for thrombo-prophylaxis. Thank you.

- These are my disclosures, as it pertains to this talk. FEVAR has become increasingly common treatment for juxtarenal aneurysm in the United States since it's commercial release in 2012. Controversy remains, however, with regard to stenting the SMA when it is treated with a single-wide, 10 mm scallop in the device.

You see here, things can look very similar. You see SMA treated with an unstented scallop on the left and one treated with the stented SMA on the right. It has been previously reported by Jason Lee that shuttering can happen with single-wide scallops of the SMA and in their experience

the SMA shuttering happens to different degree in patients, but is there in approximately 50% of the patients. But in his experience, the learning curve suggests that it decreases over time. At UNC, we use a selective criteria for stenting in the SMA. We will do a balloon test in the SMA,

as you see in the indication, and if the graft is not moved, then our SMA scallop is appropriate in line. If we have one scallop and one renal stent, its a high likelihood that SMA scallop will shift and change over time. So all those patients get stented.

If there is presence of pre-existing visceral stenosis we will stent the SMA through that scallop and in all of our plans, we generally place a 2 mm buffer, between the bottom edge of the scallop and the SMA. We looked over our results and 61 Zenith fenestrated devices performed over a short period of time.

We looked at the follow-up out up to 240 days and 40 patients in this group had at least one single wide scallop, which represented 2/3 of the group. Our most common configuration as in most practices is too small renal fenestrations and one SMA scallop.

Technically, devices were implanted in all patients. There were 27 patients that had scallops that were unstented. And 13 of the patients received stented scallops. Hospital mortality was one out of 40, from a ruptured hepatic artery aneurysm post-op.

No patients had aneurysm-related mortality to the intended treated aneurysm. If you look at this group, complications happen in one of the patients with stented SMA from a dissection which was treated with a bare metal stent extension at the time

of the initial procedure. And in the unstented patients, we had one patient with post-op nausea, elevated velocities, found to have shuttering of the graft and underwent subsequent stenting. The second patient had elevated velocities

and 20-pound weight loss at a year after his treatment, but was otherwise asymptomatic. There is no significant difference between these two groups with respect to complication risk. Dr. Veith in the group asked me to talk about stenting choice

In general, we use the atrium stent and a self-expanding stent for extension when needed and a fenestrated component. But, we have no data on how we treat the scallops. Most of those in our group are treated with atrium. We do not use VBX in our fenestrated cases

due to some concern about the seal around the supported fenestration. So Tips, we generally calculate the distance to the first branch of the SMA if we're going to stent it. We need to know the SMA diameter, generally its origin where its the largest.

We need to position the imaging intensifier orthogonal position. And we placed the stent 5-6 mm into the aortic lumen. And subsequently flare it to a 10-12 mm balloon. Many times if its a longer stent than 22, we will extend that SMA stent with a self-expanding stent.

So in conclusion, selective stenting of visceral vessels in single wide scallops is safe in fenestrated cases during this short and midterm follow-up if patients are carefully monitored. Stenting all single wide scallops is not without risk and further validation is needed

with multi-institution trial and longer follow-up

- I'm going to be speaking about indirect access sites for access intervention. I'm going to be focusing on the transjugular approach. So access interventions, typically we perform them through a direct puncture of the fistula. Sometimes you place two introducers. There are some disadvantages to the direct approach.

The crossing catheters technique that we generally use for declots is awkward and cumbersome. The introducers can obstruct flow, there's dead space behind the introducers that can trap clot, and there's radiation exposure or the direct exposure

or scatter radiation from hands near the field. Admit it, we've all had access-site complications, suture-site necrosis and infection, as well as pseudoaneurysms. There's also prolonged procedure time related to needing to obtain hemostasis

in the high-pressure segment. There are also problems particularly to immature fistulas, such as hematoma formation, spasm at the introducer site causing pseudo-stenosis, decreased flow, and fistula thrombosis. Now, the good news is that we do have options

for alternative access sites. I'm sure many of you here use arterial access for immature fistulas in particular. Brachial access can be used to, this can be used for diagnostic or therapeutic purposes. We can also utilize radial or ulnar access.

Rarely, femoral access is used, as we saw in the last presentation. But there's also pendula venous access sites. You can sometimes, as a fortuitous tributary, what I call a target of opportunity, and also, the internal jugular vein.

Now, the transjugular approach was first reported in 1998. It does have some definite advantages over direct puncture technique. You can avoid the cumbersome access, you can keep your hands away from the beam, and there's no dead space as compared

to crossing sheaths for your declot. And if the intervention is unsuccessful, you can convert your IJ access to a catheter if you already have a wire in it. There are some technical challenges associated with this technique.

You do have to overcome the valves. It can be difficult to access the cephalic vein, but you can get around this by using a snare. And there's possibly a risk of IJ thrombosis if you're using large introducers. When to use this technique?

Well, when direct puncture's going to be difficult or cumbersome, when there's a short cannulation segment, when it's an extensively stented access, and when there's inflow pathology requiring a retrograde approach or arterial empathalogy, and it's a good option for clotted access.

The technique, micropuncture access of the jugular vein, ipsilateral or contralateral, place a sheath, and an important thing to use is a reverse-curve catheter, followed by glidewire. So here, we've cannulated the jugular vein going down,

glidewire out into the arm. If you're unable to cross into the cephalic vein, you can use that snare technique. And you can get a long, stable access in this way. It's been reported about, there's about 10 publications on transjugular approach, seven retrospective studies.

There's a large study that's reported thrombectomy. Also a large study looking at immature fistulas. Smaller studies looking at dysfunctional access and pseudoaneurysms. Two case reports, one review article, but there's of course no randomized studies.

There's a recent study from this year from Ferral and Alonzo. This was a retrospective study. Over two years they performed 30 transjugular AV access interventions. This accounted for 5% of their access experience

and this series was all fistulance. Indications for the procedure, 43% were declots, 43% were arterial and fistual pathology, there were two immature fistulas and two bleeding pseudoaneurysms. The access approach was 29 for ipsilateral,

only one contralateral. The results, 97% technical success, a snare was required in 4 cases, a catheter was inserted in two of the cases. There were no episodes of jugular vein thrombosis. In the remaining time, I'd like to show

a couple of case studies. Again, from Ferral and Alonzo. This is a case of an immature fistula. This was a partially occluded, immature left upper arm fistula. The initial fistulagram shows outflow stenosis

with a multiple stenosis in thrombus, and there's an arterial in stenosis that's distal to the access point, so you're not going to be able to treat that. They performed four millimeter angioplasty. Follow-up fistulagram shows a small, but patent vein

and the arterial end could not be treated. They brought the patient back in two weeks for a staged transjugular approach. And you can see the jugular catheter coming down. The vein diameter's improved, but there's still the untreated arterial end stenosis,

which is easily treated through the jugular approach. This is a study from, a case from Dr. Rabellino, ruptured pseudoaneurysm. This is a basilic transposition with a ruptured pseudoaneurysm at an infiltration site. Pretty ugly arm, swollen, skin necrosis.

I don't think we want to be sticking that arm. They initially went with a femoral approach for the fistulagram, demonstrated the pseudoaneurysm. As you can see here, tandem outflow stenoses. Coming up from below with the femoral artery diagnostic catheter.

Down and into the arm through the jugular approach. And here, you can see the venous outflow after angioplasty, covered stent deployed through the jugular access. So in summary, the transjugular approach is a useful but underutilized technique. The advantages include single-puncture intervention,

does not involve the outflow vein directly, simplified hemostasis, it's a low pressure system. It does have the advantage that you can use large introducers, there's less radiation for the operator, and you can convert to a catheter easily if needed. It is a useful technique for fistula maturation,

thrombectomy, and access maintenance. I say go for the jugular.

Thank you, Mr Chairman. In order to avoid unnecessary repetition, I'm going to try to move forward with some of my slides. There we go. And, again, in order to avoid that, we're just going to move through the cases. I have some cases that are different

to the ones presented before. It seems that everybody's happy with this technology. This is a CTO recanalization of a patient with subacute total occulsion of the SFA that previously had a stent in place,

in the distal SFA. And here you can see how we are able to reopen the vessel and look at the clot in the entire length at the end of the catheter there. So, this technology really works.

Let me show you now an acute bowel ischemia case. A patient that comes with abdominal pain. A CTA shows that the patient has an occlusion of the proximal SMA. We put a catheter there,

we do a diagnostic angiogram confirming the occlusion, then we cross the lesion and we inject distali showing that the branches are patent. And then we put in place

an oscar directional sheath that will give us great stability to work and through that one we use a Cat Eight, from Penumbra. As you can see here, advancing the catheter in combination with the separator,

and this is the final angiogram showing complete opening of the main SMA and you can see very clearly the elements that were occluding the MSL. We are also using this technology in DVT, acute DVT, with proprietal access

and here you can see the before, and then, sometimes we use it alone, sometimes we use it in combination with angiojet and with the bull spray, followed by this technology for the areas that did not respond.

But this is usually a technology that is helping us to get rid of most of the clot. Like here, you see there is some residual clot. And after Penambra, you can direct the catheter and you can really clean the entire vein. Same here, before and after.

We are also using it for PE. I know that you guys in Miami are doing the same and we are happy with the results. And then, just to finish, I think this is a really nice case that was done by one of our partners in vascular surgery.

A patient with an occluded carotid subclavial bypass. So you see access from the brachial artery on one side. And this person, the person who did this, was smart enough to also came from the groin

and put the filter in the internal carotid artery, just in case. So then he starts to manipulate that occluded subclavial carotid bypass. As you can see here. And at a certain point,

he does a follow-up angiogram showing that the entire carotid, including the internal and external, is totally occluded. So, because he was prepared, he had a filter,

he didn't panic, he went and used the indigo device, and he was able to get all that clot out and re-establish nice anterial flowing in the carotid artery,

completely clean. The carotid subclavial bypass. And he did a final angiogram in AP and lateral view, confirming that there is no distimbolisation at the intercranial level. So, this technology really works.

I think that we all agree. And these are good examples on how we can help patients with that technology. Thank you for your attention.

- Thank you, I have no conflict of interest. Although less represented in studies, it has been clearly shown that women are less likely to benefit and more likely to suffer carotid procedural stroke or death compared to men. So let's look at procedural benefit for women in particular first, carotid endarterectomy first.

The only women with carotid stenosis who have been shown to receive a statistically significant overall benefit from carotid endarterectomy have been symptomatic women with 70 to 99% NASCET stenosis without near occlusion who had carotid endarterectomy performed within two

to three weeks of their last cerebral event. They also had to satisfy all the trial inclusion and exclusion criteria. So, symptomatic women in the randomized trials did not receive a benefit from endarterectomy compared to medical treatment on its own

if they had 70 to 99% NASCET stenosis, and endarterectomy was performed more than two to three weeks from the last cerebral event. Or if they had 50 to 69% NASCET stenosis no matter the timing of the endarterectomy. Now, symptomatic men in the

randomized trials had more benefit. Symptomatic men with 70 to 99% NASCET stenosis actually had an overall statistically significant benefit from endarterectomy up to at least three months after their last cerebral event. And I haven't seen it published exactly

when that benefit period finished. Also, men with 50 to 69% NASCET stenosis had overall benefit from endarterectomy, but only if the surgery was performed within two to three weeks of their last cerebral ischemic event. With respect to asymptomatic women,

there's been no clear benefit from endarterectomy in randomized trials. So they did not benefit in ACAS, and the closest to benefit ACST were aged less than 75 years of age. But this was only borderline statistically significant. Asymptomatic men also had more benefit in the randomized

trials of endarterectomy versus medical treatment. So, overall, they had a benefit if they had at least 60% NASCET stenosis, and they were aged less than 75 to 80. What about transfemoral, transaortic stenting? Women and men have not been shown to benefit from stenting

compared to medical intervention alone or endarterectomy. Now, I've head some rumors that women in ACT-1 trial had less harm from stenting compared to endarterectomy. But I haven't seen that result published yet. And when it is published they need to include the peri-procedural risk of stroke and death.

Of course, women and men are much less likely to benefit from any carotid procedure now due to advances in medical intervention. What about procedural harm, endarterectomy? Well, in the randomized trials of endarterectomy versus medical treatment and other studies women

are more likely to have peri-operative stroke and death compared to men. That's seen in randomized trials, but also in non-randomized trials. What about trans-femoral/aortic stenting? Randomized trials and other studies

have been underpowered to compare outcomes with stenting in symptomatic women versus men, but across both sexes stenting has significantly more harm associated with it. In a meta-analysis of randomized trials symptomatic women had one and a half times more peri-procedural stroke

and death with stenting compared to endarterectomy. Again, for asymptomatic patients the trials have been underpowered, but a trend to more harm with stenting. And, also, seen in CREST with combined symptomatic and asymptomatic women.

As Cosmas mentioned, more harm with stenting. TCAR, doesn't look like we're planning to do adequate comparisons with current medical treatment, so no current indication. In summary, overall, the only women shown to benefit from endarterectomy were symptomatic

with 70 to 99% stenosis with endarterectomy within two to three weeks of the last event. Overall, all women are more likely to be harmed by endarterectomy compared to men, and to be harmed by stenting compared to endarterectomy. Everyone is less likely to benefit

from these procedures now. So given all this information, why are we doing so many procedures in women? Thank you.

- Thank you Mr Chairman, ladies and gentlemen. These are my disclosure. Open repair is the gold standard for patient with arch disease, and the gupta perioperative risk called the mortality and major morbidity remain not negligible.

Hybrid approach has only slightly improved these outcomes, while other off-the-shelf solution need to be tested on larger samples and over the long run. In this scenario, the vascular repair would double in the branch devices as emerging, as a tentative option with promising results,

despite addressing a more complex patient population. The aim of this multi-center retrospective registry is to assess early and midterm results after endovascular aortic arch repair. using the single model of doubling the branch stent graft in patient to fit for open surgery.

All patient are treated in Italy, with this technique. We're included in this registry for a total of 24 male patient, fit for open surgery. And meeting morphological criteria for double branch devices.

This was the indication for treatment and break-down by center, and these were the main end points. You can see here some operative details. Actually, this was theo only patient that did not require the LSA

re-revascularization before the endovascular procedure, because the left tibial artery rising directly from the aortic arch was reattached on the left common carotid artery. You can see here the large window in the superior aspect of the stent graft

accepting the two 13 millimeter in the branches, that are catheterized from right common carotid artery and left common carotid artery respectively. Other important feature of this kind of stent graft is the lock stent system, as you can see, with rounded barbs inside

the tunnels to prevent limb disconnection. All but one patient achieved technical success. And two of the three major strokes, and two retrograde dissection were the cause of the four early death.

No patient had any type one or three endoleak. One patient required transient dialysis and four early secondary procedure were needed for ascending aorta replacement and cervical bleeding. At the mean follow-up of 18 months,

one patient died from non-aortic cause and one patient had non-arch related major stroke. No new onset type one or three endoleak was detected, and those on standard vessel remained patent. No patient had the renal function iteration or secondary procedure,

while the majority of patients reported significant sac shrinkage. Excluding from the analysis the first six patients as part of a learning curve, in-hospital mortality, major stroke and retrograde dissection rate significant decrease to 11%, 11% and 5.67%.

Operative techniques significantly evolve during study period, as confirmed by the higher use of custom-made limb for super-aortic stenting and the higher use of common carotid arteries

as the access vessels for this extension. In addition, fluoroscopy time, and contrast median's significantly decrease during study period. We learned that stroke and retrograde dissection are the main causes of operative mortality.

Of course, we can reduce stroke rate by patient selection excluding from this technique all those patient with the Shaggy Aorta Supra or diseased aortic vessel, and also by the introduction and more recent experience of some technical points like sequentIal clamping of common carotid arteries

or the gas flushing with the CO2. We can also prevent the retrograde dissection, again with patient selection, according to the availability of a healthy sealing zone, but in our series, 6 of the 24 patients

presented an ascending aorta larger than 40 millimeter. And on of this required 48-millimeter proximal size custom-made stent graft. This resulted in two retrograde dissection, but on the other hand, the availability on this platform of a so large proximal-sized,

customized stent graft able to seal often so large ascending aorta may decrease the incidence of type I endoleak up to zero, and this may make sense in order to give a chance of repair to patients that we otherwise rejected for clinical or morphological reasons.

So in conclusion, endovascular arch repair with double branch devices is a feasible approach that enrich the armamentarium for vascular research. And there are many aspects that may limit or preclude the widespread use of this technology

with subsequent difficulty in drawing strong conclusion. Operative mortality and major complication rates suffer the effect of a learning curve, while mid-term results of survival are more than promising. I thank you for your attention.

- Thank you for asking me to speak. Thank you Dr Veith. I have no disclosures. I'm going to start with a quick case again of a 70 year old female presented with right lower extremity rest pain and non-healing wound at the right first toe

and left lower extremity claudication. She had non-palpable femoral and distal pulses, her ABIs were calcified but she had decreased wave forms. Prior anterior gram showed the following extensive aortoiliac occlusive disease due to the small size we went ahead and did a CT scan and confirmed.

She had a very small aorta measuring 14 millimeters in outer diameter and circumferential calcium of her aorta as well as proximal common iliac arteries. Due to this we treated her with a right common femoral artery cutdown and an antegrade approach to her SFA occlusion with a stent.

We then converted the sheath to a retrograde approach, place a percutaneous left common femoral artery access and then placed an Endologix AFX device with a 23 millimeter main body at the aortic bifurcation. We then ballooned both the aorta and iliac arteries and then placed bilateral balloon expandable

kissing iliac stents to stent the outflow. Here is our pre, intra, and post operative films. She did well. Her rest pain resolved, her first toe amputation healed, we followed her for about 10 months. She also has an AV access and had a left arterial steel

on a left upper extremity so last week I was able to undergo repeat arteriogram and this is at 10 months out. We can see that he stent remains open with good flow and no evidence of in stent stenosis. There's very little literature about using endografts for occlusive disease.

Van Haren looked at 10 patients with TASC-D lesions that were felt to be high risk for aorta bifem using the Endologix AFX device. And noted 100% technical success rate. Eight patients did require additional stent placements. There was 100% resolution of the symptoms

with improved ABIs bilaterally. At 40 months follow up there's a primary patency rate of 80% and secondary of 100% with one acute limb occlusion. Zander et all, using the Excluder prothesis, looked at 14 high risk patients for aorta bifem with TASC-C and D lesions of the aorta.

Similarly they noted 100% technical success. Nine patients required additional stenting, all patients had resolution of their symptoms and improvement of their ABIs. At 62 months follow up they noted a primary patency rate of 85% and secondary of 100

with two acute limb occlusions. The indications for this procedure in general are symptomatic patient with a TASC C or D lesion that's felt to either be a high operative risk for aorta bifem or have a significantly calcified aorta where clamping would be difficult as we saw in our patient.

These patients are usually being considered for axillary bifemoral bypass. Some technical tips. Access can be done percutaneously through a cutdown. I do recommend a cutdown if there's femoral disease so you can preform a femoral endarterectomy and

profundaplasty at the same time. Brachial access is also an alternative option. Due to the small size and disease vessels, graft placement may be difficult and may require predilation with either the endograft sheath dilator or high-pressure balloon.

In calcified vessels you may need to place covered stents in order to pass the graft to avoid rupture. Due to the poor radial force of endografts, the graft must be ballooned after placement with either an aortic occlusion balloon but usually high-pressure balloons are needed.

It usually also needs to be reinforced the outflow with either self-expanding or balloon expandable stents to prevent limb occlusion. Some precautions. If the vessels are calcified and tortuous again there may be difficult graft delivery.

In patients with occluded vessels standard techniques for crossing can be used, however will require pre-dilation before endograft positioning. If you have a sub intimal cannulation this does put the vessel at risk for rupture during

balloon dilation. Small aortic diameters may occlude limbs particularly using modular devices. And most importantly, the outflow must be optimized using stents distally if needed in the iliac arteries, but even more importantly, assuring that you've

treated the femoral artery and outflow to the profunda. Despite these good results, endograft use for occlusive disease is off label use and therefor not reimbursed. In comparison to open stents, endograft use is expensive and may not be cost effective. There's no current studies looking

into the cost/benefit ratio. Thank you.

- Thank you Mr. Chairman, good morning ladies and gentlemen. So that was a great setting of the stage for understanding that we need to prevent reinterventions of course. So we looked at the data from the DREAM trial. We're all aware that we can try

to predict secondary interventions using preoperative CT parameters of EVAR patients. This is from the EVAR one trial, from Thomas Wyss. We can look at the aortic neck, greater angulation and more calcification.

And the common iliac artery, thrombus or tortuosity, are all features that are associated with the likelihood of reinterventions. We also know that we can use postoperative CT scans to predict reinterventions. But, as a matter of fact, of course,

secondary sac growth is a reason for reintervention, so that is really too late to predict it. There are a lot of reinterventions. This is from our long term analysis from DREAM, and as you can see the freedom, survival freedom of reinterventions in the endovascular repair group

is around 62% at 12 years. So one in three patients do get confronted with some sort of reintervention. Now what can be predicted? We thought that the proximal neck reinterventions would possibly be predicted

by type 1a Endoleaks and migration and iliac thrombosis by configurational changes, stenosis and kinks. So the hypothesis was: The increase of the neck diameter predicts proximal type 1 Endoleak and migration, not farfetched.

And aneurysm shrinkage maybe predicts iliac limb occlusion. Now in the DREAM trial, we had a pretty solid follow-up and all patients had CT scans for the first 24 months, so the idea was really to use

those case record forms to try to predict the longer term reinterventions after four, five, six years. These are all the measurements that we had. For this little study, and it is preliminary analysis now,

but I will be presenting the maximal neck diameter at the proximal anastomosis. The aneurysm diameter, the sac diameter, and the length of the remaining sac after EVAR. Baseline characteristics. And these are the re-interventions.

For any indications, we had 143 secondary interventions. 99 of those were following EVAR in 54 patients. By further breaking it down, we found 18 reinterventions for proximal neck complications, and 19 reinterventions

for thrombo-occlusive limb complications. So those are the complications we are trying to predict. So when you put everything in a graph, like the graphs from the EVAR 1 trial, you get these curves,

and this is the neck diameter in patients without neck reintervention, zero, one month, six months, 12, 18, and 24 months. There's a general increase of the diameter that we know.

But notice it, there are a lot of patients that have an increase here, and never had any reintervention. We had a couple of reinterventions in the long run, and all of these spaces seem to be staying relatively stable,

so that's not helping much. This is the same information for the aortic length reinterventions. So statistical analysis of these amounts of data and longitudinal measures is not that easy. So here we are looking at

the neck diameters compared for all patients with 12 month full follow-up, 18 and 24. You see there's really nothing happening. The only thing is that we found the sac diameter after EVAR seems to be decreasing more for patients who have had reinterventions

at their iliac limbs for thrombo-occlusive disease. That is something we recognize from the literature, and especially from these stent grafts in the early 2000s. So conclusion, Mr. Chairman, ladies and gentlemen, CT changes in the first two months after EVAR

predict not a lot. Neck diameter was not predictive for neck-reinterventions. Sac diameter seems to be associated with iliac limb reinterventions, and aneurysm length was not predictive

of iliac limb reinterventions. Thank you very much.

- Thank you very much, Frank, ladies and gentlemen. Thank you, Mr. Chairman. I have no disclosure. Standard carotid endarterectomy patch-plasty and eversion remain the gold standard of treatment of symptomatic and asymptomatic patient with significant stenosis. One important lesson we learn in the last 50 years

of trial and tribulation is the majority of perioperative and post-perioperative stroke are related to technical imperfection rather than clamping ischemia. And so the importance of the technical accuracy of doing the endarterectomy. In ideal world the endarterectomy shouldn't be (mumbling).

It should contain embolic material. Shouldn't be too thin. While this is feasible in the majority of the patient, we know that when in clinical practice some patient with long plaque or transmural lesion, or when we're operating a lesion post-radiation,

it could be very challenging. Carotid bypass, very popular in the '80s, has been advocated as an alternative of carotid endarterectomy, and it doesn't matter if you use a vein or a PTFE graft. The result are quite durable. (mumbling) showing this in 198 consecutive cases

that the patency, primary patency rate was 97.9% in 10 years, so is quite a durable procedure. Nowadays we are treating carotid lesion with stinting, and the stinting has been also advocated as a complementary treatment, but not for a bail out, but immediately after a completion study where it

was unsatisfactory. Gore hybrid graft has been introduced in the market five years ago, and it was the natural evolution of the vortec technique that (mumbling) published a few years before, and it's a technique of a non-suture anastomosis.

And this basically a heparin-bounded bypass with the Nitinol section then expand. At King's we are very busy at the center, but we did 40 bypass for bail out procedure. The technique with the Gore hybrid graft is quite stressful where the constrained natural stint is inserted

inside internal carotid artery. It's got the same size of a (mumbling) shunt, and then the plumbing line is pulled, and than anastomosis is done. The proximal anastomosis is performed in the usual fashion with six (mumbling), and the (mumbling) was reimplanted

selectively. This one is what look like in the real life the patient with the personal degradation, the carotid hybrid bypass inserted and the external carotid artery were implanted. Initially we very, very enthusiastic, so we did the first cases with excellent result.

In total since November 19, 2014 we perform 19 procedure. All the patient would follow up with duplex scan and the CT angiogram post operation. During the follow up four cases block. The last two were really the two very high degree stenosis. And the common denominator was that all the patients

stop one of the dual anti-platelet treatment. They were stenosis wise around 40%, but only 13% the significant one. This one is one of the patient that developed significant stenosis after two years, and you can see in the typical position at the end of the stint.

This one is another patient who develop a quite high stenosis at proximal end. Our patency rate is much lower than the one report by Rico. So in conclusion, ladies and gentlemen, the carotid endarterectomy remain still the gold standard,

and (mumbling) carotid is usually an afterthought. Carotid bypass is a durable procedure. It should be in the repertoire of every vascular surgeon undertaking carotid endarterectomy. Gore hybrid was a promising technology because unfortunate it's been just not produced by Gore anymore,

and unfortunately it carried quite high rate of restenosis that probably we should start to treat it in the future. Thank you very much for your attention.

- Like to thank Dr. Veith and the committee for asking me to speak. I have no conflicts related to this presentation. Labial and vulvar varicosities occur in up to 10% of pregnant women, with the worst symptoms being manifested in the second half of the pregnancy.

Symptoms include genital pressure and fullness, pruritus, and a sensation of prolapse. These generally worsen with standing. Management is usually conservative. Between compression hose, cooling packs, and exercise, most women can make it through to the end of the pregnancy.

When should we do more than just reassure these women? An ultrasound should be performed when there's an early presentation, meaning in the first trimester, as this can be an unmasking of a venous malformation. If there are unilateral varicosities,

an ultrasound should be performed to make sure that these aren't due to iliac vein thrombosis. If there's superficial thrombosis or phlebitis, you may need to rule out deep venous extension with an ultrasound. When should we intervene?

You may need to intervene to release trapped blood in phlebitis, or to give low molecular weight heparin for comfort. When should a local phlebectomy or sclerotherapy be performed? Should sclerotherapy be performed during pregnancy?

We know very little. Occasionally, this is performed in a patient who is unknowingly pregnant, and there have been no clear complications from this in the literature. The effectiveness of sclero may also

be diminished in pregnancy, due to hormones and increased venous volume. Both polidocanol and sodium tetradecyl sulfate say that there is no support for use during pregnancies, and they advise against it. So what should you do?

This following case is a 24 year old G2P1, who was referred to me at 24 weeks for disabling vaginal and pelvic discomfort. She couldn't go to work, she couldn't take care of her toddler, she had some left leg complaints, but it was mostly genital discomfort and fullness,

and her OB said that he was going to do a pre-term C-section because he was worried about the risk of hemorrhage with the delivery. So this is her laying supine pre-op, and this is her left leg with varicosities visible in the anterior and posterior aspects.

Her ultrasound showed open iliac veins and large refluxing varicosities in the left vulvar area. She had no venous malformation or clot, and she had reflux in the saphenofemoral junction and down the GSV. I performed a phlebectomy on her,

and started with an ultrasound mapping of her superficial veins and perforators in the labial region. I made small incision with dissection and tie ligation of all the varicosities and perforators, and this was done under local anesthesia

with minimal sedation in the operating room. This resulted in vastly improved comfort, and her anxiety, and her OB's anxiety were both decreased, and she went on to a successful delivery. So this diagram shows the usual location of the labial perforators.

Here she is pre-op, and then here she is a week post-op. Well, what about postpartum varicosities? These can be associated with pelvic congestion, and the complaints can often be split into local, meaning surface complaints, versus pelvic complaints.

And this leads into a debate between a top down treatment approach, where you go in and do a venogram and internal coiling, versus a bottom up approach, where you start with local therapy, such as phlebectomy or sclero.

Pelvic symptoms include aching and pressure in the pelvis. These are usually worse with menstruation, and dyspareunia is most pronounced after intercourse, approximately an hour to several hours later. Surface complaints include vulvar itching, tenderness, recurrent thrombophlebitis, or bleeding.

Dyspareunia is present during or at initiation of sexual intercourse. I refer to this as the Gibson Algorithm, as Kathy Gibson and I have talked about this problem a lot, and this is how we both feel that these problems should be addressed.

If you have an asymptomatic or minimally symptomatic patient who's referred for varicosities that are seen incidentally, such as during a laparoscopy, those I don't treat. If you have a symptomatic patient who has pelvic symptoms, then these people get a venogram with coils and sclerotherapy as appropriate.

If they are not pregnant, and have no pelvic symptoms, these patients get sclero. If they are pregnant, and have no pelvic symptoms, they get a phlebectomy. In conclusion, vulvar varicosities are a common problem, and usually conservative management is adequate.

With extreme symptoms, phlebectomy has been successful. Pregnancy-related varicosities typically resolve post-delivery, and these can then be treated with local sclerotherapy if they persist. Central imaging and treatment is successful for primarily pelvic complaints or persistent symptoms.

Thank you.

- Thank you so much for the opportunity to present our experience. You are all familiar in this place with the SVS classification for blunt aortic injury, and you all know that it doesn't tell you what to do with each patient,

it doesn't guide treatment. A few years ago we presented a simple, practical grading system based on CAT scan findings for the management of these patients. When a patient has a minimal aortic injury, it's a patient with no aortic contour abnormality,

they have either an intimal flap or a small thrombus less than 10 mm. These patients we don't do any interventions. Patient's that present with an aortic contour abnormality or a large intimal flap or large thrombus have a moderate injury.

These patients get repair in a semi-elective manner once they have stabilized further injuries. One the other hand, persons that present with a severe injury, persons with active extravasation, this patient need to go to the OR because he's dying

and this takes precedence above any other injuries. So, since we implemented this system we took a three years look from 2014 to 2017 to see how are our results. We have 87 patients, 63 percent were moderate, 28 percent minimal, and nine percent severe.

None of the patients underwent open repair, and none of the patients with a minimal got fix. All but three of the patients with a moderate, and all but one of the patients with a severe have TEVAR as a repair method. These are very sick patients, high in the severity scores,

with high rates of intracranial hemorrhages and associated injuries. When we look at the anatomy, the patient with a severe injury are more likely to have a bovine arch anatomy. These are young patients with small aortas,

with a median aortic diameter of 23. The operative timing is the time since the patient hit the door of the emergency room to the patient getting to the OR, was 53 hours for a patient with a moderate injury, and three hours for a patient with a severe.

These are short procedures that can be done in less than 90 minutes with minimal contrast used, and around five minutes of fluoro time. We used intravascular ultrasound very widely. We have covered the subclavian artery

in around 40 percent of the patients. We do all this percutaneously. We are successful in around 86 percent of the cases. We have not had to revascularize any subclavian artery. We had one patient that required a plaque during the index case of the subclavian,

one patient that had a femoral pseudoaneurysm that we treated with thrombin, one patient that was already on a heparin drip for a PE. We took her to the OR more than 24 hours after the heparin drip was started, fixed the TEVAR.

After that the patient had a complete normal CAT scan. More than 12 hours after the heparin drip being restarted for the PE she had a worsening intracranial bleed. We don't know that was related to our procedure. We have no patient with new stroke

or worsening spinal cord injury for the procedure. 30-day followup CT scan had excellent remodeling in every single patient. We have not performed any delay interventions. Our 30-day mortality is very low. There is only one patient with an aortic-related mortality.

This is a patient that presented with a severe injury. She was more than 90 years old and the family elected to don't proceed with any treatment. So in conclusions, we consider the patients with minimal aortic injury do not require surgical treatment or followup imaging.

Patient with a moderate can be safely undergo TEVAR in a semi-elective manner once they are stable from other injuries, but the patient with a severe aortic injury require emergent repair. These procedures are very fast

and can be successfully performed percutaneously. Complications are rare, and the followup reveal excellent remodeling of the aorta that will likely result in longer interval surveillance requirements. Thank you.

- Thank you very much Raul and our co-chair and also Frank Veith for inviting me again. I'm going to tell you a little bit about flow augmentation. And I have no disclosures related to this. Well, flow augmentation after venous stenting for venous obstruction potentially improves outcome. That's a statement that is

most of the people will support that. Important characteristic of noninvasive compression device after venous stenting is that they improve blood flow inside the newly stented patient,

they stimulate the calf pump muscle, and they're a synergistic tool along anticoagulation, and to decrease the risk for re-occlusion. Well, there are flow devices. Most of the people I think use intermittent pneumatic calf compression

for a few days after the procedure. That can be done but there are now neuromuscular stimulating devices like the FlowAid and the Geko device to stimulate nerves and then the calf won't contract. The physiologic effects of intermittent

pneumatic compression are there. They had been analyzed significantly. There's a decrease of venous stasis and venous pressure, increase flow, increase fibrinolysis, and the blood volume is better and the venous emptying is better.

There's an increased endothelial shear stress, increased the A-V pressure gradient, and there's a decrease in incidence of thrombosis. Those are already published in several papers. Well, what about the neurostimulation device? We have the FlowAid.

FlowAid is a battery powdered neuromuscular electro-stimulation device designed to increase blood flow in the veins. And again this also shows the sequential pattern of neuromuscular electrical stimulation at the calf and causes the calf muscle pump to expel blood

and increase venous, arterial, and microcirculatory blood flow. While these analyses have all been done with healthy volunteers and they show a better outcome then also in intermittent pneumatic compression.

The same is for the Geko device. It's a device which you put along and you stimulate the peroneal nerve, you get a calf contraction. And this also showed in several papers in healthy volunteers that it improves

venous flow, arterial flow, and microcirculatory flow. But it's all analyzed in healthy volunteers, so we said, well, let's do like a short pilot study and see if for even patient with PTS we get the same results, and we looked at that.

But we did a very short pilot in seven patients. We stopped it because we saw already that we need a bigger study, but I will just explain to you what we found in those seven patients. We measured the flow velocity and volume

before and after stenting in the iliac tract to see if we have the increased flow in the common femoral vein in those PTS patients. These are the seven patients, and as you can see it's important

that they don't have a VCSS of 6.4, and the diseased leg, and less than one in the healthy leg, and the Villalta scores will show above 11 on average. So those patients were analyzed and this is what you see. You see

the velocity in the femoral vein before stenting at baseline is, can I point it, yeah, okay, is here. That you see there's a very low velocity. You can increase the velocity with the neurostimulation but there's a higher velocity increase

with the intermittent pneumatic compression. After stenting you see luckily that the velocity has increased, and the stimulation of the neuromuscular is indeed also higher, but the intermittent

pneumatic compression does better. If you look at the volume flow, of course before the treatment, it's low, 32 cc a minute, and then you get an increase with the Geko and an increase with the intermittent

pneumatic compression which is much higher. And after stenting you see that it also improves, you see luckily the stent procedure was successful because we have a much higher flow rate than before the stent procedure. So in conclusion in the literature and the pilot studies

said that neurostimulatory devices have a proven good augmented blood flow in healthy subjects, even better than IPC devices, but there's no experience in PTS patients yet. So this small pilot study shows that the results obtained in healthy subjects

cannot be extrapolated to PTS patients or patients with post stent situations, therefore we are conducting now two randomized studies to compare FlowAid with IPC and the Geko device with IPC, and to see for if this has use, because why is this important?

A potential benefit of the neurostimulation is that you can use it mobile and 24/7 instead of with the IPC procedure which you can only use in a bedridden patient. So if it is as good as or close to, you can use it for a few weeks after stenting

to get the flow up and running and that you have less early stent occlusions. We are also analyzing for if it can replace AV fistula which we do after end of phlebectomies and to prevent really early re-occlusion. And as I said we need those studies to be done

but that the important message is that we don't go home with the fact that those devices, although in healthy volunteers show a very good outcome, they have to be tested in patients with PTS. Thank you very much.

- Thank you and thanks again Frank for the kind invitation to be here another year. So there's several anatomic considerations for complex aortic repair. I wanted to choose between fenestrations or branches,

both with regards to that phenotype and the mating stent and we'll go into those. There are limitations to total endovascular approaches such as visceral anatomy, severe angulations,

and renal issues, as well as shaggy aortas where endo solutions are less favorable. This paper out of the Mayo Clinic showing that about 20% of the cases of thoracodynia aneurysms

non-suitable due to renal issues alone, and if we look at the subset that are then suitable, the anatomy of the renal arteries in this case obviously differs so they might be more or less suitable for branches

versus fenestration and the aneurysm extent proximally impacts that renal angle. So when do we use branches and when do we use fenestrations? Well, overall, it seems to be, to most people,

that branches are easier to use. They're easier to orient. There's more room for error. There's much more branch overlap securing those mating stents. But a branch device does require

more aortic coverage than a fenestrated equivalent. So if we extrapolate that to juxtarenal or pararenal repair a branched device will allow for much more proximal coverage

than in a fenestrated device which has, in this series from Dr. Chuter's group, shows that there is significant incidence of lower extremity weakness if you use an all-branch approach. And this was, of course, not biased

due to Crawford extent because the graft always looks the same. So does a target vessel anatomy and branch phenotype matter in of itself? Well of course, as we've discussed, the different anatomic situations

impact which type of branch or fenestration you use. Again going back to Tim Chuter's paper, and Tim who only used branches for all of the anatomical situations, there was a significant incidence of renal branch occlusion

during follow up in these cases. And this has been reproduced. This is from the Munster group showing that tortuosity is a significant factor, a predictive factor, for renal branch occlusion

after branched endovascular repair, and then repeated from Mario Stella's group showing that upward-facing renal arteries have immediate technical problems when using branches, and if you have the combination of downward and then upward facing

the long term outcome is impaired if you use a branched approach. And we know for the renals that using a fenestrated phenotype seems to improve the outcomes, and this has been shown in multiple trials

where fenestrations for renals do better than branches. So then moving away from the phenotype to the mating stent. Does the type of mating stent matter? In branch repairs we looked at this

from these five major European centers in about 500 patients to see if the type of mating stent used for branch phenotype grafts mattered. It was very difficult to evaluate and you can see in this rather busy graph

that there was a combination used of self-expanding and balloon expandable covered stents in these situations. And in fact almost 2/3 of the patients had combinations in their grafts, so combining balloon expandable covered stents

with self expanding stents, and vice versa, making these analyses very very difficult. But what we could replicate, of course, was the earlier findings that the event rates with using branches for celiac and SMA were very low,

whereas they were significant for left renal arteries and if you saw the last session then in similar situations after open repair, although this includes not only occlusions but re-interventions of course.

And we know when we use fenestrations that where we have wall contact that using covered stents is generally better than using bare stents which we started out with but the type of covered stent

also seems to matter and this might be due to the stiffness of the stent or how far it protrudes into the target vessel. There is a multitude of new bridging stents available for BEVAR and FEVAR: Covera, Viabahn, VBX, and Bentley plus,

and they all seem to have better flexibility, better profile, and better radial force so they're easier to use, but there's no long-term data evaluating these devices. The technical success rate is already quite high for all of these.

So this is a summary. We've talked using branches versus fenestration and often a combination to design the device to the specific patient anatomy is the best. So in summary,

always use covered stents even when you do fenestrated grafts. At present, mix and match seems to be beneficial both with regards to the phenotype and the mating stent. Short term results seem to be good.

Technical results good and reproducible but long term results are lacking and there is very limited comparative data. Thank you. (audience applauding)

3

Thanks very much, Tom. I'll be talking about thermal ablation on anticoagula is it safe and effective? I have no disclosures. As we know, extensive review of both RF and laser

ablation procedures have demonstrated excellent treatment effectiveness and durability in each modality, but there is less data regarding treatment effectiveness and durability for those procedures in patients who are also on systemic anticoagulation. As we know, there's multiple studies have been done

over the past 10 years, with which we're all most familiar showing a percent of the durable ablation, both modalities from 87% to 95% at two to five years. There's less data on those on the anticoagulation undergoing thermal ablation.

The largest study with any long-term follow up was by Sharifi in 2011, and that was 88 patients and follow-up at one year. Both RF and the EVLA had 100% durable ablation with minimal bleeding complications. The other studies were all smaller groups

or for very much shorter follow-up. In 2017, a very large study came out, looking at the EVLA and RF using 375 subjects undergoing with anticoagulation. But it was only a 30-day follow-up, but it did show a 30% durable ablation

at that short time interval. Our objective was to evaluate efficacy, durability, and safety of RF and EVLA, the GSV and the SSV to treat symptomatic reflux in patients on therapeutic anticoagulation, and this group is with warfarin.

The data was collected from NYU, single-center. Patients who had undergone RF or laser ablation between 2011 and 2013. Ninety-two vessels of patients on warfarin at the time of endothermal ablation were selected for study. That's the largest to date with some long-term follow-up.

And this group was compared to a matched group of 124 control patients. Devices used were the ClosureFast catheter and the NeverTouch kits by Angiodynamics. Technical details, standard IFU for the catheters. Tumescent anesthetic.

And fiber tips were kept about 2.5 centimeters from the SFJ or the SPJ. Vein occlusion was defined as the absence of blood flow by duplex scan along the length of the treated vein. You're all familiar with the devices, so the methods included follow-up, duplex ultrasound

at one week post-procedure, and then six months, and then also at a year. And then annually. Outcomes were analyzed with Kaplan-Meier plots and log rank tests. The results of the anticoagulation patients, 92,

control, 124, the mean follow-up was 470 days. And you can see that the demographics were rather similar between the two groups. There was some more coronary disease and hypertension in the anticoagulated groups, and that's really not much of a surprise

and some more male patients. Vessels treated, primarily GSV. A smaller amount of SSV in both the anticoagulated and the control groups. Indications for anticoagulation.

About half of the patients were in atrial fibrillation. Another 30% had a remote DVT in the contralateral limb. About 8% had mechanical valves, and 11% were for other reasons. And the results. The persistent vein ablation at 12 months,

the anticoagulation patients was 97%, and the controls was 99%. Persistent vein ablation by treated vessel, on anticoagulation. Didn't matter if it was GSV or SSV. Both had persistent ablation,

and by treatment modality, also did not matter whether it was laser or RF. Both equivalent. If there was antiplatelet therapy in addition to the anticoagulation, again if you added aspirin or Clopidogrel,

also no change. And that was at 12 months. We looked then at persistent vein ablation out at 18 months. It was still at 95% for the controls, and 91% for the anticoagulated patients. Still not statistically significantly different.

At 24 months, 89% in both groups. Although the numbers were smaller at 36 months, there was actually still no statistically significant difference. Interestingly, the anticoagulated group actually had a better persistent closure rate

than the control group. That may just be because the patients that come back at 36 months who didn't have anticoagulation may have been skewed. The ones we actually saw were ones that had a problem. It gets harder to have patients

come back at three months who haven't had an uneventful venous ablation procedure. Complication, no significant hematomas. Three patients had DVTs within 30 days. One anticoagulation patient had a popliteal DVT, and one control patient.

And one control patient had a calf vein DVT. Two EHITs. One GSV treated with laser on anticoagulation noted at six days, and one not on anticoagulation at seven days. Endovenous RF and EVLA can be safely performed

in patients undergoing long-term warfarin therapy. Our experience has demonstrated a similar short- and mid-term durability for RF ablation and laser, and platelet therapy does not appear to impact the closer rates,

which is consistent with the prior studies. And the frequency of vein recanalization following venous ablation procedures while on ACs is not worse compared to controls, and to the expected incidence as described in the literature.

This is the largest study to date with follow-up beyond 30 days with thermal ablation procedures on anticoagulation patients. We continue to look at these patients for even longer term durability. Thanks very much for your attention.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.